Comparison of Multichannel Signal Deconvolution Algorithms in Airborne LiDAR Bathymetry Based on Wavelet Transform Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-533732/v1
Airborne LiDAR bathymetry offers low cost and high mobility, making it an ideal option for shallow-water measurements. However, due to differences in the measurement environment and the laser emission channel, the received waveform is difficult to extract using a single algorithm. The choice of a suitable waveform processing method is thus extremely important to guarantee the accuracy of the bathymetric retrieval. In this work, we use a wavelet-denoising method to denoise the received waveform and then test four algorithms for denoised-waveform processing: Richardson–Lucy deconvolution (RLD), blind deconvolution (BD), Wiener filter deconvolution (WFD), and constrained least-squares filter deconvolution (RFD). The simulation database and the measured multichannel database are used to evaluate the algorithms, with the focus on improving their performance after the data-denoising preprocessing and their capability of extracting water depth. The results show that applying wavelet denoising before deconvolution improves the extraction accuracy. The four algorithms perform better for the shallow water orthogonal polarization channel (PMT2) than the shallow horizontal row polarization channel (PMT1). Of the four algorithms, RLD provides the best signal-detection rate, and RFD is the most robust. BD has low computational efficiency, and WFD performs poorly in deep water (<25 m).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-533732/v1
- https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000
- OA Status
- green
- Cited By
- 4
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4248231963
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4248231963Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-533732/v1Digital Object Identifier
- Title
-
Comparison of Multichannel Signal Deconvolution Algorithms in Airborne LiDAR Bathymetry Based on Wavelet TransformWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-20Full publication date if available
- Authors
-
Yue Song, Houpu Li, Guojun Zhai, Yan He, Shaofeng Bian, Wei ZhouList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-533732/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000Direct OA link when available
- Concepts
-
Deconvolution, Algorithm, Bathymetry, Wiener filter, Wavelet, Computer science, Waveform, Wiener deconvolution, Blind deconvolution, Filter (signal processing), Noise reduction, Wavelet transform, Artificial intelligence, Computer vision, Radar, Telecommunications, Geology, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4248231963 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-533732/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-533732/v1 |
| ids.openalex | https://openalex.org/W4248231963 |
| fwci | 0.36299962 |
| type | preprint |
| title | Comparison of Multichannel Signal Deconvolution Algorithms in Airborne LiDAR Bathymetry Based on Wavelet Transform |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11698 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9815000295639038 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Underwater Acoustics Research |
| topics[2].id | https://openalex.org/T10271 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9643999934196472 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | Seismic Imaging and Inversion Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C174576160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6928983330726624 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[0].display_name | Deconvolution |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.648281991481781 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C174943157 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6353205442428589 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q810826 |
| concepts[2].display_name | Bathymetry |
| concepts[3].id | https://openalex.org/C18537770 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6000425815582275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25523 |
| concepts[3].display_name | Wiener filter |
| concepts[4].id | https://openalex.org/C47432892 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5760438442230225 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[4].display_name | Wavelet |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5542876124382019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C197424946 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5516862273216248 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[6].display_name | Waveform |
| concepts[7].id | https://openalex.org/C15652857 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4861430823802948 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q599016 |
| concepts[7].display_name | Wiener deconvolution |
| concepts[8].id | https://openalex.org/C30044814 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47024813294410706 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11334452 |
| concepts[8].display_name | Blind deconvolution |
| concepts[9].id | https://openalex.org/C106131492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4210616946220398 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[9].display_name | Filter (signal processing) |
| concepts[10].id | https://openalex.org/C163294075 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4149935245513916 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[10].display_name | Noise reduction |
| concepts[11].id | https://openalex.org/C196216189 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4139312207698822 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[11].display_name | Wavelet transform |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2988591492176056 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21423014998435974 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C554190296 |
| concepts[14].level | 2 |
| concepts[14].score | 0.14112526178359985 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[14].display_name | Radar |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12576675415039062 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C127313418 |
| concepts[16].level | 0 |
| concepts[16].score | 0.1175186038017273 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[16].display_name | Geology |
| concepts[17].id | https://openalex.org/C111368507 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[17].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/deconvolution |
| keywords[0].score | 0.6928983330726624 |
| keywords[0].display_name | Deconvolution |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.648281991481781 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/bathymetry |
| keywords[2].score | 0.6353205442428589 |
| keywords[2].display_name | Bathymetry |
| keywords[3].id | https://openalex.org/keywords/wiener-filter |
| keywords[3].score | 0.6000425815582275 |
| keywords[3].display_name | Wiener filter |
| keywords[4].id | https://openalex.org/keywords/wavelet |
| keywords[4].score | 0.5760438442230225 |
| keywords[4].display_name | Wavelet |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5542876124382019 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/waveform |
| keywords[6].score | 0.5516862273216248 |
| keywords[6].display_name | Waveform |
| keywords[7].id | https://openalex.org/keywords/wiener-deconvolution |
| keywords[7].score | 0.4861430823802948 |
| keywords[7].display_name | Wiener deconvolution |
| keywords[8].id | https://openalex.org/keywords/blind-deconvolution |
| keywords[8].score | 0.47024813294410706 |
| keywords[8].display_name | Blind deconvolution |
| keywords[9].id | https://openalex.org/keywords/filter |
| keywords[9].score | 0.4210616946220398 |
| keywords[9].display_name | Filter (signal processing) |
| keywords[10].id | https://openalex.org/keywords/noise-reduction |
| keywords[10].score | 0.4149935245513916 |
| keywords[10].display_name | Noise reduction |
| keywords[11].id | https://openalex.org/keywords/wavelet-transform |
| keywords[11].score | 0.4139312207698822 |
| keywords[11].display_name | Wavelet transform |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2988591492176056 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.21423014998435974 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/radar |
| keywords[14].score | 0.14112526178359985 |
| keywords[14].display_name | Radar |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.12576675415039062 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/geology |
| keywords[16].score | 0.1175186038017273 |
| keywords[16].display_name | Geology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-533732/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-533732/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075379587 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1920-740X |
| authorships[0].author.display_name | Yue Song |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[0].affiliations[0].raw_affiliation_string | Naval University of Engineering |
| authorships[0].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[0].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Naval University of Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue Song |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Naval University of Engineering |
| authorships[1].author.id | https://openalex.org/A5045745804 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9698-8911 |
| authorships[1].author.display_name | Houpu Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[1].affiliations[0].raw_affiliation_string | Naval University of Engineering |
| authorships[1].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[1].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Naval University of Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Houpu Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Naval University of Engineering |
| authorships[2].author.id | https://openalex.org/A5112876636 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Guojun Zhai |
| authorships[2].affiliations[0].raw_affiliation_string | Naval Institute of Marine Environment |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guojun Zhai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Naval Institute of Marine Environment |
| authorships[3].author.id | https://openalex.org/A5010590125 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1721-7711 |
| authorships[3].author.display_name | Yan He |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[3].affiliations[0].raw_affiliation_string | Chinese Academy of Sciences |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yan He |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chinese Academy of Sciences |
| authorships[4].author.id | https://openalex.org/A5046853018 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1919-2746 |
| authorships[4].author.display_name | Shaofeng Bian |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[4].affiliations[0].raw_affiliation_string | Naval University of Engineering |
| authorships[4].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[4].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Naval University of Engineering |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shaofeng Bian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Naval University of Engineering |
| authorships[5].author.id | https://openalex.org/A5100636968 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0322-095X |
| authorships[5].author.display_name | Wei Zhou |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2800497579 |
| authorships[5].affiliations[0].raw_affiliation_string | Guangxi Key Laboratory of Spatial Information and Geomatics |
| authorships[5].institutions[0].id | https://openalex.org/I2800497579 |
| authorships[5].institutions[0].ror | https://ror.org/022482e21 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I2800497579 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | CRC for Spatial information |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guangxi Key Laboratory of Spatial Information and Geomatics |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison of Multichannel Signal Deconvolution Algorithms in Airborne LiDAR Bathymetry Based on Wavelet Transform |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W495284, https://openalex.org/W7626757, https://openalex.org/W5462945, https://openalex.org/W5603416, https://openalex.org/W1998914, https://openalex.org/W13440847, https://openalex.org/W6611656, https://openalex.org/W7564530, https://openalex.org/W3341269, https://openalex.org/W12549230 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-533732/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-533732/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-533732/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-533732/v1.pdf?c=1631882292000 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-533732/v1 |
| publication_date | 2021-05-20 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2158260191, https://openalex.org/W4200394859, https://openalex.org/W181107242, https://openalex.org/W4250769027, https://openalex.org/W4200084300, https://openalex.org/W2789481028, https://openalex.org/W2130415283, https://openalex.org/W2110287406, https://openalex.org/W2997728581, https://openalex.org/W2778235202, https://openalex.org/W2008018545, https://openalex.org/W2163636005, https://openalex.org/W152027415, https://openalex.org/W2088909704, https://openalex.org/W2140161421, https://openalex.org/W1707484866, https://openalex.org/W2082750454, https://openalex.org/W2110511947, https://openalex.org/W2094194352, https://openalex.org/W1990077509, https://openalex.org/W1987797589, https://openalex.org/W2094605604, https://openalex.org/W2105935820, https://openalex.org/W159618849, https://openalex.org/W2062939783, https://openalex.org/W3081248544, https://openalex.org/W2397806614, https://openalex.org/W2106335216, https://openalex.org/W2158757182, https://openalex.org/W2169951244, https://openalex.org/W1984528947, https://openalex.org/W3099592193, https://openalex.org/W2063128146, https://openalex.org/W2033716204 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 39, 45, 67 |
| abstract_inverted_index.BD | 181 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.Of | 165 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.in | 22, 190 |
| abstract_inverted_index.is | 34, 50, 177 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 44, 58, 127 |
| abstract_inverted_index.on | 116 |
| abstract_inverted_index.to | 20, 36, 54, 70, 109 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.RFD | 176 |
| abstract_inverted_index.RLD | 169 |
| abstract_inverted_index.The | 42, 99, 131, 144 |
| abstract_inverted_index.WFD | 187 |
| abstract_inverted_index.and | 7, 26, 75, 93, 102, 124, 175, 186 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 15, 80, 149 |
| abstract_inverted_index.has | 182 |
| abstract_inverted_index.low | 5, 183 |
| abstract_inverted_index.m). | 194 |
| abstract_inverted_index.row | 161 |
| abstract_inverted_index.the | 23, 27, 31, 56, 59, 72, 103, 111, 114, 121, 141, 150, 158, 166, 171, 178 |
| abstract_inverted_index.use | 66 |
| abstract_inverted_index.best | 172 |
| abstract_inverted_index.cost | 6 |
| abstract_inverted_index.deep | 191 |
| abstract_inverted_index.four | 78, 145, 167 |
| abstract_inverted_index.high | 8 |
| abstract_inverted_index.most | 179 |
| abstract_inverted_index.show | 133 |
| abstract_inverted_index.test | 77 |
| abstract_inverted_index.than | 157 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.then | 76 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.thus | 51 |
| abstract_inverted_index.used | 108 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.(BD), | 88 |
| abstract_inverted_index.LiDAR | 2 |
| abstract_inverted_index.after | 120 |
| abstract_inverted_index.blind | 86 |
| abstract_inverted_index.focus | 115 |
| abstract_inverted_index.ideal | 13 |
| abstract_inverted_index.laser | 28 |
| abstract_inverted_index.rate, | 174 |
| abstract_inverted_index.their | 118, 125 |
| abstract_inverted_index.using | 38 |
| abstract_inverted_index.water | 129, 152, 192 |
| abstract_inverted_index.work, | 64 |
| abstract_inverted_index.(PMT2) | 156 |
| abstract_inverted_index.(RFD). | 98 |
| abstract_inverted_index.(RLD), | 85 |
| abstract_inverted_index.(WFD), | 92 |
| abstract_inverted_index.Wiener | 89 |
| abstract_inverted_index.before | 138 |
| abstract_inverted_index.better | 148 |
| abstract_inverted_index.choice | 43 |
| abstract_inverted_index.depth. | 130 |
| abstract_inverted_index.filter | 90, 96 |
| abstract_inverted_index.making | 10 |
| abstract_inverted_index.method | 49, 69 |
| abstract_inverted_index.offers | 4 |
| abstract_inverted_index.option | 14 |
| abstract_inverted_index.poorly | 189 |
| abstract_inverted_index.single | 40 |
| abstract_inverted_index.(<25 | 193 |
| abstract_inverted_index.(PMT1). | 164 |
| abstract_inverted_index.channel | 155, 163 |
| abstract_inverted_index.denoise | 71 |
| abstract_inverted_index.extract | 37 |
| abstract_inverted_index.perform | 147 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.robust. | 180 |
| abstract_inverted_index.shallow | 151, 159 |
| abstract_inverted_index.wavelet | 136 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Airborne | 1 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.accuracy | 57 |
| abstract_inverted_index.applying | 135 |
| abstract_inverted_index.channel, | 30 |
| abstract_inverted_index.database | 101, 106 |
| abstract_inverted_index.emission | 29 |
| abstract_inverted_index.evaluate | 110 |
| abstract_inverted_index.improves | 140 |
| abstract_inverted_index.measured | 104 |
| abstract_inverted_index.performs | 188 |
| abstract_inverted_index.provides | 170 |
| abstract_inverted_index.received | 32, 73 |
| abstract_inverted_index.suitable | 46 |
| abstract_inverted_index.waveform | 33, 47, 74 |
| abstract_inverted_index.accuracy. | 143 |
| abstract_inverted_index.denoising | 137 |
| abstract_inverted_index.difficult | 35 |
| abstract_inverted_index.extremely | 52 |
| abstract_inverted_index.guarantee | 55 |
| abstract_inverted_index.important | 53 |
| abstract_inverted_index.improving | 117 |
| abstract_inverted_index.mobility, | 9 |
| abstract_inverted_index.algorithm. | 41 |
| abstract_inverted_index.algorithms | 79, 146 |
| abstract_inverted_index.bathymetry | 3 |
| abstract_inverted_index.capability | 126 |
| abstract_inverted_index.extracting | 128 |
| abstract_inverted_index.extraction | 142 |
| abstract_inverted_index.horizontal | 160 |
| abstract_inverted_index.orthogonal | 153 |
| abstract_inverted_index.processing | 48 |
| abstract_inverted_index.retrieval. | 61 |
| abstract_inverted_index.simulation | 100 |
| abstract_inverted_index.algorithms, | 112, 168 |
| abstract_inverted_index.bathymetric | 60 |
| abstract_inverted_index.constrained | 94 |
| abstract_inverted_index.differences | 21 |
| abstract_inverted_index.efficiency, | 185 |
| abstract_inverted_index.environment | 25 |
| abstract_inverted_index.measurement | 24 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.processing: | 82 |
| abstract_inverted_index.multichannel | 105 |
| abstract_inverted_index.polarization | 154, 162 |
| abstract_inverted_index.computational | 184 |
| abstract_inverted_index.deconvolution | 84, 87, 91, 97, 139 |
| abstract_inverted_index.least-squares | 95 |
| abstract_inverted_index.measurements. | 17 |
| abstract_inverted_index.preprocessing | 123 |
| abstract_inverted_index.shallow-water | 16 |
| abstract_inverted_index.data-denoising | 122 |
| abstract_inverted_index.signal-detection | 173 |
| abstract_inverted_index.Richardson–Lucy | 83 |
| abstract_inverted_index.denoised-waveform | 81 |
| abstract_inverted_index.wavelet-denoising | 68 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5075379587 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I2800710378 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.57486251 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |