Compilation Techniques for Graph Algorithms on GPUs Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.07990
The performance of graph programs depends highly on the algorithm, the size and structure of the input graphs, as well as the features of the underlying hardware. No single set of optimizations or one hardware platform works well across all settings. To achieve high performance, the programmer must carefully select which set of optimizations and hardware platforms to use. The GraphIt programming language makes it easy for the programmer to write the algorithm once and optimize it for different inputs using a scheduling language. However, GraphIt currently has no support for generating high performance code for GPUs. Programmers must resort to re-implementing the entire algorithm from scratch in a low-level language with an entirely different set of abstractions and optimizations in order to achieve high performance on GPUs. We propose GG, an extension to the GraphIt compiler framework, that achieves high performance on both CPUs and GPUs using the same algorithm specification. GG significantly expands the optimization space of GPU graph processing frameworks with a novel GPU scheduling language and compiler that enables combining graph optimizations for GPUs. GG also introduces two performance optimizations, Edge-based Thread Warps CTAs load balancing (ETWC) and EdgeBlocking, to expand the optimization space for GPUs. ETWC improves load balancing by dynamically partitioning the edges of each vertex into blocks that are assigned to threads, warps, and CTAs for execution. EdgeBlocking improves the locality of the program by reordering the edges and restricting random memory accesses to fit within the L2 cache. We evaluate GG on 5 algorithms and 9 input graphs on both Pascal and Volta generation NVIDIA GPUs, and show that it achieves up to 5.11x speedup over state-of-the-art GPU graph processing frameworks, and is the fastest on 66 out of the 90 experiments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.07990
- https://arxiv.org/pdf/2012.07990
- OA Status
- green
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3118850762
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3118850762Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.07990Digital Object Identifier
- Title
-
Compilation Techniques for Graph Algorithms on GPUsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-14Full publication date if available
- Authors
-
Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib Kamil, Julian Shun, Saman AmarasingheList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.07990Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.07990Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.07990Direct OA link when available
- Concepts
-
Computer science, Parallel computing, Graph, Algorithm, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3118850762 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.07990 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.07990 |
| ids.mag | 3118850762 |
| ids.openalex | https://openalex.org/W3118850762 |
| fwci | |
| type | preprint |
| title | Compilation Techniques for Graph Algorithms on GPUs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12292 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Graph Theory and Algorithms |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9886000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6704438924789429 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C173608175 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5133942365646362 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[1].display_name | Parallel computing |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46725010871887207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.39934101700782776 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.27951207756996155 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6704438924789429 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parallel-computing |
| keywords[1].score | 0.5133942365646362 |
| keywords[1].display_name | Parallel computing |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.46725010871887207 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.39934101700782776 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.27951207756996155 |
| keywords[4].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.07990 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.07990 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.07990 |
| locations[1].id | doi:10.48550/arxiv.2012.07990 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2012.07990 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5046807118 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5295-4186 |
| authorships[0].author.display_name | Ajay Brahmakshatriya |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ajay Brahmakshatriya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[1].author.id | https://openalex.org/A5102790106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3087-5580 |
| authorships[1].author.display_name | Yunming Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[1].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I63966007 |
| authorships[1].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunming Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[2].author.id | https://openalex.org/A5027442506 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9069-8374 |
| authorships[2].author.display_name | Changwan Hong |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changwan Hong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[3].author.id | https://openalex.org/A5039453861 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5965-3717 |
| authorships[3].author.display_name | Shoaib Kamil |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1306409833 |
| authorships[3].affiliations[0].raw_affiliation_string | [Adobe Systems] |
| authorships[3].institutions[0].id | https://openalex.org/I1306409833 |
| authorships[3].institutions[0].ror | https://ror.org/059tvcg64 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1306409833 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Adobe Systems (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shoaib Kamil |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [Adobe Systems] |
| authorships[4].author.id | https://openalex.org/A5051583907 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6163-6625 |
| authorships[4].author.display_name | Julian Shun |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[4].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[4].institutions[0].id | https://openalex.org/I63966007 |
| authorships[4].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Julian Shun |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[5].author.id | https://openalex.org/A5046791216 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7231-7643 |
| authorships[5].author.display_name | Saman Amarasinghe |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[5].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[5].institutions[0].id | https://openalex.org/I63966007 |
| authorships[5].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Saman Amarasinghe |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.07990 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Compilation Techniques for Graph Algorithms on GPUs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12292 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Graph Theory and Algorithms |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.07990 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.07990 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.07990 |
| primary_location.id | pmh:oai:arXiv.org:2012.07990 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.07990 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.07990 |
| publication_date | 2020-12-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2119407198, https://openalex.org/W2899106831, https://openalex.org/W2914894107, https://openalex.org/W2000041758, https://openalex.org/W3100848837, https://openalex.org/W2038497593, https://openalex.org/W2104329103, https://openalex.org/W2962812689, https://openalex.org/W1504291959, https://openalex.org/W2604520577, https://openalex.org/W1832683484, https://openalex.org/W2523378841, https://openalex.org/W2766910786, https://openalex.org/W2730999914, https://openalex.org/W2295258302, https://openalex.org/W2079274727, https://openalex.org/W2767104566, https://openalex.org/W2232813226, https://openalex.org/W2409430164, https://openalex.org/W2962865652, https://openalex.org/W2914631005, https://openalex.org/W2294347342, https://openalex.org/W2080098453, https://openalex.org/W1476041289, https://openalex.org/W2751581470, https://openalex.org/W2035080386, https://openalex.org/W2042545849, https://openalex.org/W2034102265, https://openalex.org/W1957118585, https://openalex.org/W1788180225, https://openalex.org/W1593868476, https://openalex.org/W1955594754, https://openalex.org/W2927576984, https://openalex.org/W1992476323, https://openalex.org/W2718955078, https://openalex.org/W2986726791, https://openalex.org/W2524623326, https://openalex.org/W2100218206, https://openalex.org/W2170616854, https://openalex.org/W2950537538, https://openalex.org/W2792524085, https://openalex.org/W2057112598, https://openalex.org/W2912007486, https://openalex.org/W2604668004, https://openalex.org/W2109473404, https://openalex.org/W3008451639, https://openalex.org/W1945708402, https://openalex.org/W2606413522, https://openalex.org/W2107173440, https://openalex.org/W2935056433, https://openalex.org/W2144085134, https://openalex.org/W2572767837, https://openalex.org/W78077100, https://openalex.org/W2790789009, https://openalex.org/W2788981395, https://openalex.org/W2053076698, https://openalex.org/W2116721352, https://openalex.org/W2546973305, https://openalex.org/W1783256592, https://openalex.org/W2107251158, https://openalex.org/W2056116767, https://openalex.org/W2798525482, https://openalex.org/W2619040869, https://openalex.org/W2430299817, https://openalex.org/W2915012400, https://openalex.org/W3021182071, https://openalex.org/W3098650335, https://openalex.org/W2511364592, https://openalex.org/W2581090187, https://openalex.org/W2883156110, https://openalex.org/W2897644843, https://openalex.org/W1896160955, https://openalex.org/W2904797948, https://openalex.org/W1543897857, https://openalex.org/W2898231337, https://openalex.org/W2963921057, https://openalex.org/W1965830721, https://openalex.org/W1976692187 |
| referenced_works_count | 78 |
| abstract_inverted_index.5 | 250 |
| abstract_inverted_index.9 | 253 |
| abstract_inverted_index.a | 81, 108, 164 |
| abstract_inverted_index.66 | 284 |
| abstract_inverted_index.90 | 288 |
| abstract_inverted_index.GG | 152, 178, 248 |
| abstract_inverted_index.L2 | 244 |
| abstract_inverted_index.No | 27 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.We | 128, 246 |
| abstract_inverted_index.an | 112, 131 |
| abstract_inverted_index.as | 18, 20 |
| abstract_inverted_index.by | 204, 231 |
| abstract_inverted_index.in | 107, 120 |
| abstract_inverted_index.is | 280 |
| abstract_inverted_index.it | 64, 76, 267 |
| abstract_inverted_index.no | 88 |
| abstract_inverted_index.of | 2, 14, 23, 30, 52, 116, 158, 209, 228, 286 |
| abstract_inverted_index.on | 7, 126, 142, 249, 256, 283 |
| abstract_inverted_index.or | 32 |
| abstract_inverted_index.to | 57, 69, 100, 122, 133, 193, 217, 240, 270 |
| abstract_inverted_index.up | 269 |
| abstract_inverted_index.GG, | 130 |
| abstract_inverted_index.GPU | 159, 166, 275 |
| abstract_inverted_index.The | 0, 59 |
| abstract_inverted_index.all | 39 |
| abstract_inverted_index.and | 12, 54, 74, 118, 145, 169, 191, 220, 235, 252, 259, 264, 279 |
| abstract_inverted_index.are | 215 |
| abstract_inverted_index.fit | 241 |
| abstract_inverted_index.for | 66, 77, 90, 95, 176, 198, 222 |
| abstract_inverted_index.has | 87 |
| abstract_inverted_index.one | 33 |
| abstract_inverted_index.out | 285 |
| abstract_inverted_index.set | 29, 51, 115 |
| abstract_inverted_index.the | 8, 10, 15, 21, 24, 45, 67, 71, 102, 134, 148, 155, 195, 207, 226, 229, 233, 243, 281, 287 |
| abstract_inverted_index.two | 181 |
| abstract_inverted_index.CPUs | 144 |
| abstract_inverted_index.CTAs | 187, 221 |
| abstract_inverted_index.ETWC | 200 |
| abstract_inverted_index.GPUs | 146 |
| abstract_inverted_index.also | 179 |
| abstract_inverted_index.both | 143, 257 |
| abstract_inverted_index.code | 94 |
| abstract_inverted_index.each | 210 |
| abstract_inverted_index.easy | 65 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.high | 43, 92, 124, 140 |
| abstract_inverted_index.into | 212 |
| abstract_inverted_index.load | 188, 202 |
| abstract_inverted_index.must | 47, 98 |
| abstract_inverted_index.once | 73 |
| abstract_inverted_index.over | 273 |
| abstract_inverted_index.same | 149 |
| abstract_inverted_index.show | 265 |
| abstract_inverted_index.size | 11 |
| abstract_inverted_index.that | 138, 171, 214, 266 |
| abstract_inverted_index.use. | 58 |
| abstract_inverted_index.well | 19, 37 |
| abstract_inverted_index.with | 111, 163 |
| abstract_inverted_index.5.11x | 271 |
| abstract_inverted_index.GPUs, | 263 |
| abstract_inverted_index.GPUs. | 96, 127, 177, 199 |
| abstract_inverted_index.Volta | 260 |
| abstract_inverted_index.Warps | 186 |
| abstract_inverted_index.edges | 208, 234 |
| abstract_inverted_index.graph | 3, 160, 174, 276 |
| abstract_inverted_index.input | 16, 254 |
| abstract_inverted_index.makes | 63 |
| abstract_inverted_index.novel | 165 |
| abstract_inverted_index.order | 121 |
| abstract_inverted_index.space | 157, 197 |
| abstract_inverted_index.using | 80, 147 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.works | 36 |
| abstract_inverted_index.write | 70 |
| abstract_inverted_index.(ETWC) | 190 |
| abstract_inverted_index.NVIDIA | 262 |
| abstract_inverted_index.Pascal | 258 |
| abstract_inverted_index.Thread | 185 |
| abstract_inverted_index.across | 38 |
| abstract_inverted_index.blocks | 213 |
| abstract_inverted_index.cache. | 245 |
| abstract_inverted_index.entire | 103 |
| abstract_inverted_index.expand | 194 |
| abstract_inverted_index.graphs | 255 |
| abstract_inverted_index.highly | 6 |
| abstract_inverted_index.inputs | 79 |
| abstract_inverted_index.memory | 238 |
| abstract_inverted_index.random | 237 |
| abstract_inverted_index.resort | 99 |
| abstract_inverted_index.select | 49 |
| abstract_inverted_index.single | 28 |
| abstract_inverted_index.vertex | 211 |
| abstract_inverted_index.warps, | 219 |
| abstract_inverted_index.within | 242 |
| abstract_inverted_index.GraphIt | 60, 85, 135 |
| abstract_inverted_index.achieve | 42, 123 |
| abstract_inverted_index.depends | 5 |
| abstract_inverted_index.enables | 172 |
| abstract_inverted_index.expands | 154 |
| abstract_inverted_index.fastest | 282 |
| abstract_inverted_index.graphs, | 17 |
| abstract_inverted_index.program | 230 |
| abstract_inverted_index.propose | 129 |
| abstract_inverted_index.scratch | 106 |
| abstract_inverted_index.speedup | 272 |
| abstract_inverted_index.support | 89 |
| abstract_inverted_index.However, | 84 |
| abstract_inverted_index.accesses | 239 |
| abstract_inverted_index.achieves | 139, 268 |
| abstract_inverted_index.assigned | 216 |
| abstract_inverted_index.compiler | 136, 170 |
| abstract_inverted_index.entirely | 113 |
| abstract_inverted_index.evaluate | 247 |
| abstract_inverted_index.features | 22 |
| abstract_inverted_index.hardware | 34, 55 |
| abstract_inverted_index.improves | 201, 225 |
| abstract_inverted_index.language | 62, 110, 168 |
| abstract_inverted_index.locality | 227 |
| abstract_inverted_index.optimize | 75 |
| abstract_inverted_index.platform | 35 |
| abstract_inverted_index.programs | 4 |
| abstract_inverted_index.threads, | 218 |
| abstract_inverted_index.algorithm | 72, 104, 150 |
| abstract_inverted_index.balancing | 189, 203 |
| abstract_inverted_index.carefully | 48 |
| abstract_inverted_index.combining | 173 |
| abstract_inverted_index.currently | 86 |
| abstract_inverted_index.different | 78, 114 |
| abstract_inverted_index.extension | 132 |
| abstract_inverted_index.hardware. | 26 |
| abstract_inverted_index.language. | 83 |
| abstract_inverted_index.low-level | 109 |
| abstract_inverted_index.platforms | 56 |
| abstract_inverted_index.settings. | 40 |
| abstract_inverted_index.structure | 13 |
| abstract_inverted_index.Edge-based | 184 |
| abstract_inverted_index.algorithm, | 9 |
| abstract_inverted_index.algorithms | 251 |
| abstract_inverted_index.execution. | 223 |
| abstract_inverted_index.framework, | 137 |
| abstract_inverted_index.frameworks | 162 |
| abstract_inverted_index.generating | 91 |
| abstract_inverted_index.generation | 261 |
| abstract_inverted_index.introduces | 180 |
| abstract_inverted_index.processing | 161, 277 |
| abstract_inverted_index.programmer | 46, 68 |
| abstract_inverted_index.reordering | 232 |
| abstract_inverted_index.scheduling | 82, 167 |
| abstract_inverted_index.underlying | 25 |
| abstract_inverted_index.Programmers | 97 |
| abstract_inverted_index.dynamically | 205 |
| abstract_inverted_index.frameworks, | 278 |
| abstract_inverted_index.performance | 1, 93, 125, 141, 182 |
| abstract_inverted_index.programming | 61 |
| abstract_inverted_index.restricting | 236 |
| abstract_inverted_index.EdgeBlocking | 224 |
| abstract_inverted_index.abstractions | 117 |
| abstract_inverted_index.experiments. | 289 |
| abstract_inverted_index.optimization | 156, 196 |
| abstract_inverted_index.partitioning | 206 |
| abstract_inverted_index.performance, | 44 |
| abstract_inverted_index.EdgeBlocking, | 192 |
| abstract_inverted_index.optimizations | 31, 53, 119, 175 |
| abstract_inverted_index.significantly | 153 |
| abstract_inverted_index.optimizations, | 183 |
| abstract_inverted_index.specification. | 151 |
| abstract_inverted_index.re-implementing | 101 |
| abstract_inverted_index.state-of-the-art | 274 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |