Compiler-assisted scheduling for multi-instance GPUs Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3530390.3532734
NVIDIA's Multi-Instance GPU (MIG) feature allows users to partition a GPU's compute and memory into independent hardware instances. MIG guarantees full isolation among co-executing kernels on the device, which boosts security and prevents performance interference-related degradation. Despite the benefits of isolation, however, certain workloads do not necessarily need such guarantees, and in fact enforcing such isolation can negatively impact the throughput of a group of processes. In this work we aim to relax the isolation property for certain types of jobs, and to show how this can dramatically boost throughput across a mixed workload consisting of jobs that demand isolation and others that do not. The number of MIG partitions is hardware-limited but configurable, and state-of-the-art workload managers cannot safely take advantage of unused and wasted resources inside a given partition. We show how a compiler and runtime system working in tandem can be used to pack jobs into partitions when isolation is not necessary. Using this technique we improve overall utilization of the device while still reaping the benefits of MIG's isolation properties. Our experimental results on NVIDIA A30s with a throughput-oriented workload show an average of 1.45x throughput improvement and 2.93x increase in GPU memory utilization over the Slurm workload manager. The presented framework is fully automatic and requires no changes to user code. Based on these results, we believe our scheme is a practical and strong advancement over state-of-the-art techniques currently employed for MIG.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3530390.3532734
- https://dl.acm.org/doi/pdf/10.1145/3530390.3532734
- OA Status
- gold
- Cited By
- 4
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280642742
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280642742Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3530390.3532734Digital Object Identifier
- Title
-
Compiler-assisted scheduling for multi-instance GPUsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-03Full publication date if available
- Authors
-
Chris Porter, Chao Chen, Santosh PandeList of authors in order
- Landing page
-
https://doi.org/10.1145/3530390.3532734Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3530390.3532734Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3530390.3532734Direct OA link when available
- Concepts
-
Computer science, Compiler, Partition (number theory), Workload, Isolation (microbiology), Scheduling (production processes), Throughput, Parallel computing, Distributed computing, Embedded system, Operating system, Wireless, Microbiology, Operations management, Mathematics, Combinatorics, Economics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280642742 |
|---|---|
| doi | https://doi.org/10.1145/3530390.3532734 |
| ids.doi | https://doi.org/10.1145/3530390.3532734 |
| ids.openalex | https://openalex.org/W4280642742 |
| fwci | 0.89166896 |
| type | article |
| title | Compiler-assisted scheduling for multi-instance GPUs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10054 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1708 |
| topics[0].subfield.display_name | Hardware and Architecture |
| topics[0].display_name | Parallel Computing and Optimization Techniques |
| topics[1].id | https://openalex.org/T11181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Data Storage Technologies |
| topics[2].id | https://openalex.org/T10715 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9994999766349792 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed and Parallel Computing Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8499909043312073 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C169590947 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7551751136779785 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47506 |
| concepts[1].display_name | Compiler |
| concepts[2].id | https://openalex.org/C42812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7485485076904297 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[2].display_name | Partition (number theory) |
| concepts[3].id | https://openalex.org/C2778476105 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7294418215751648 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q628539 |
| concepts[3].display_name | Workload |
| concepts[4].id | https://openalex.org/C2775941552 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6104732155799866 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25212305 |
| concepts[4].display_name | Isolation (microbiology) |
| concepts[5].id | https://openalex.org/C206729178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6006125211715698 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[5].display_name | Scheduling (production processes) |
| concepts[6].id | https://openalex.org/C157764524 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5143641233444214 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[6].display_name | Throughput |
| concepts[7].id | https://openalex.org/C173608175 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5026485919952393 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[7].display_name | Parallel computing |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38097596168518066 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C149635348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35809457302093506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[9].display_name | Embedded system |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3158622980117798 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C555944384 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[11].display_name | Wireless |
| concepts[12].id | https://openalex.org/C89423630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7193 |
| concepts[12].display_name | Microbiology |
| concepts[13].id | https://openalex.org/C21547014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[13].display_name | Operations management |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8499909043312073 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/compiler |
| keywords[1].score | 0.7551751136779785 |
| keywords[1].display_name | Compiler |
| keywords[2].id | https://openalex.org/keywords/partition |
| keywords[2].score | 0.7485485076904297 |
| keywords[2].display_name | Partition (number theory) |
| keywords[3].id | https://openalex.org/keywords/workload |
| keywords[3].score | 0.7294418215751648 |
| keywords[3].display_name | Workload |
| keywords[4].id | https://openalex.org/keywords/isolation |
| keywords[4].score | 0.6104732155799866 |
| keywords[4].display_name | Isolation (microbiology) |
| keywords[5].id | https://openalex.org/keywords/scheduling |
| keywords[5].score | 0.6006125211715698 |
| keywords[5].display_name | Scheduling (production processes) |
| keywords[6].id | https://openalex.org/keywords/throughput |
| keywords[6].score | 0.5143641233444214 |
| keywords[6].display_name | Throughput |
| keywords[7].id | https://openalex.org/keywords/parallel-computing |
| keywords[7].score | 0.5026485919952393 |
| keywords[7].display_name | Parallel computing |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.38097596168518066 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/embedded-system |
| keywords[9].score | 0.35809457302093506 |
| keywords[9].display_name | Embedded system |
| keywords[10].id | https://openalex.org/keywords/operating-system |
| keywords[10].score | 0.3158622980117798 |
| keywords[10].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1145/3530390.3532734 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3530390.3532734 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 14th Workshop on General Purpose Processing Using GPU |
| locations[0].landing_page_url | https://doi.org/10.1145/3530390.3532734 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049228142 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2821-2668 |
| authorships[0].author.display_name | Chris Porter |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[0].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I130701444 |
| authorships[0].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Georgia Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chris Porter |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Georgia Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5100408398 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1960-4042 |
| authorships[1].author.display_name | Chao Chen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[1].affiliations[0].raw_affiliation_string | Amazon Web Services |
| authorships[1].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Amazon (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chao Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amazon Web Services |
| authorships[2].author.id | https://openalex.org/A5061235810 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6723-8062 |
| authorships[2].author.display_name | Santosh Pande |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[2].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I130701444 |
| authorships[2].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Georgia Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Santosh Pande |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Georgia Institute of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3530390.3532734 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Compiler-assisted scheduling for multi-instance GPUs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10054 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1708 |
| primary_topic.subfield.display_name | Hardware and Architecture |
| primary_topic.display_name | Parallel Computing and Optimization Techniques |
| related_works | https://openalex.org/W2479014312, https://openalex.org/W1583465708, https://openalex.org/W1541585229, https://openalex.org/W1601646354, https://openalex.org/W4235959758, https://openalex.org/W4245265375, https://openalex.org/W2078700326, https://openalex.org/W1853049011, https://openalex.org/W2150593430, https://openalex.org/W1506438023 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3530390.3532734 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3530390.3532734 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 14th Workshop on General Purpose Processing Using GPU |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3530390.3532734 |
| primary_location.id | doi:10.1145/3530390.3532734 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3530390.3532734 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 14th Workshop on General Purpose Processing Using GPU |
| primary_location.landing_page_url | https://doi.org/10.1145/3530390.3532734 |
| publication_date | 2022-04-03 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4220728567, https://openalex.org/W2323909431, https://openalex.org/W2090584832, https://openalex.org/W1979882601, https://openalex.org/W3200486361, https://openalex.org/W2899071864, https://openalex.org/W3031315690, https://openalex.org/W2990879208, https://openalex.org/W2914209329 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 9, 62, 91, 128, 134, 181, 225 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.We | 131 |
| abstract_inverted_index.an | 185 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.do | 44, 103 |
| abstract_inverted_index.in | 51, 140, 194 |
| abstract_inverted_index.is | 110, 152, 206, 224 |
| abstract_inverted_index.no | 211 |
| abstract_inverted_index.of | 39, 61, 64, 79, 95, 107, 122, 162, 170, 187 |
| abstract_inverted_index.on | 25, 177, 217 |
| abstract_inverted_index.to | 7, 71, 82, 145, 213 |
| abstract_inverted_index.we | 69, 158, 220 |
| abstract_inverted_index.GPU | 2, 195 |
| abstract_inverted_index.MIG | 18, 108 |
| abstract_inverted_index.Our | 174 |
| abstract_inverted_index.The | 105, 203 |
| abstract_inverted_index.aim | 70 |
| abstract_inverted_index.and | 12, 31, 50, 81, 100, 114, 124, 136, 191, 209, 227 |
| abstract_inverted_index.but | 112 |
| abstract_inverted_index.can | 56, 86, 142 |
| abstract_inverted_index.for | 76, 235 |
| abstract_inverted_index.how | 84, 133 |
| abstract_inverted_index.not | 45, 153 |
| abstract_inverted_index.our | 222 |
| abstract_inverted_index.the | 26, 37, 59, 73, 163, 168, 199 |
| abstract_inverted_index.A30s | 179 |
| abstract_inverted_index.MIG. | 236 |
| abstract_inverted_index.fact | 52 |
| abstract_inverted_index.full | 20 |
| abstract_inverted_index.into | 14, 148 |
| abstract_inverted_index.jobs | 96, 147 |
| abstract_inverted_index.need | 47 |
| abstract_inverted_index.not. | 104 |
| abstract_inverted_index.over | 198, 230 |
| abstract_inverted_index.pack | 146 |
| abstract_inverted_index.show | 83, 132, 184 |
| abstract_inverted_index.such | 48, 54 |
| abstract_inverted_index.take | 120 |
| abstract_inverted_index.that | 97, 102 |
| abstract_inverted_index.this | 67, 85, 156 |
| abstract_inverted_index.used | 144 |
| abstract_inverted_index.user | 214 |
| abstract_inverted_index.when | 150 |
| abstract_inverted_index.with | 180 |
| abstract_inverted_index.work | 68 |
| abstract_inverted_index.(MIG) | 3 |
| abstract_inverted_index.1.45x | 188 |
| abstract_inverted_index.2.93x | 192 |
| abstract_inverted_index.Based | 216 |
| abstract_inverted_index.GPU's | 10 |
| abstract_inverted_index.MIG's | 171 |
| abstract_inverted_index.Slurm | 200 |
| abstract_inverted_index.Using | 155 |
| abstract_inverted_index.among | 22 |
| abstract_inverted_index.boost | 88 |
| abstract_inverted_index.code. | 215 |
| abstract_inverted_index.fully | 207 |
| abstract_inverted_index.given | 129 |
| abstract_inverted_index.group | 63 |
| abstract_inverted_index.jobs, | 80 |
| abstract_inverted_index.mixed | 92 |
| abstract_inverted_index.relax | 72 |
| abstract_inverted_index.still | 166 |
| abstract_inverted_index.these | 218 |
| abstract_inverted_index.types | 78 |
| abstract_inverted_index.users | 6 |
| abstract_inverted_index.which | 28 |
| abstract_inverted_index.while | 165 |
| abstract_inverted_index.NVIDIA | 178 |
| abstract_inverted_index.across | 90 |
| abstract_inverted_index.allows | 5 |
| abstract_inverted_index.boosts | 29 |
| abstract_inverted_index.cannot | 118 |
| abstract_inverted_index.demand | 98 |
| abstract_inverted_index.device | 164 |
| abstract_inverted_index.impact | 58 |
| abstract_inverted_index.inside | 127 |
| abstract_inverted_index.memory | 13, 196 |
| abstract_inverted_index.number | 106 |
| abstract_inverted_index.others | 101 |
| abstract_inverted_index.safely | 119 |
| abstract_inverted_index.scheme | 223 |
| abstract_inverted_index.strong | 228 |
| abstract_inverted_index.system | 138 |
| abstract_inverted_index.tandem | 141 |
| abstract_inverted_index.unused | 123 |
| abstract_inverted_index.wasted | 125 |
| abstract_inverted_index.Despite | 36 |
| abstract_inverted_index.average | 186 |
| abstract_inverted_index.believe | 221 |
| abstract_inverted_index.certain | 42, 77 |
| abstract_inverted_index.changes | 212 |
| abstract_inverted_index.compute | 11 |
| abstract_inverted_index.device, | 27 |
| abstract_inverted_index.feature | 4 |
| abstract_inverted_index.improve | 159 |
| abstract_inverted_index.kernels | 24 |
| abstract_inverted_index.overall | 160 |
| abstract_inverted_index.reaping | 167 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.runtime | 137 |
| abstract_inverted_index.working | 139 |
| abstract_inverted_index.NVIDIA's | 0 |
| abstract_inverted_index.benefits | 38, 169 |
| abstract_inverted_index.compiler | 135 |
| abstract_inverted_index.employed | 234 |
| abstract_inverted_index.hardware | 16 |
| abstract_inverted_index.however, | 41 |
| abstract_inverted_index.increase | 193 |
| abstract_inverted_index.manager. | 202 |
| abstract_inverted_index.managers | 117 |
| abstract_inverted_index.prevents | 32 |
| abstract_inverted_index.property | 75 |
| abstract_inverted_index.requires | 210 |
| abstract_inverted_index.results, | 219 |
| abstract_inverted_index.security | 30 |
| abstract_inverted_index.workload | 93, 116, 183, 201 |
| abstract_inverted_index.advantage | 121 |
| abstract_inverted_index.automatic | 208 |
| abstract_inverted_index.currently | 233 |
| abstract_inverted_index.enforcing | 53 |
| abstract_inverted_index.framework | 205 |
| abstract_inverted_index.isolation | 21, 55, 74, 99, 151, 172 |
| abstract_inverted_index.partition | 8 |
| abstract_inverted_index.practical | 226 |
| abstract_inverted_index.presented | 204 |
| abstract_inverted_index.resources | 126 |
| abstract_inverted_index.technique | 157 |
| abstract_inverted_index.workloads | 43 |
| abstract_inverted_index.consisting | 94 |
| abstract_inverted_index.guarantees | 19 |
| abstract_inverted_index.instances. | 17 |
| abstract_inverted_index.isolation, | 40 |
| abstract_inverted_index.necessary. | 154 |
| abstract_inverted_index.negatively | 57 |
| abstract_inverted_index.partition. | 130 |
| abstract_inverted_index.partitions | 109, 149 |
| abstract_inverted_index.processes. | 65 |
| abstract_inverted_index.techniques | 232 |
| abstract_inverted_index.throughput | 60, 89, 189 |
| abstract_inverted_index.advancement | 229 |
| abstract_inverted_index.guarantees, | 49 |
| abstract_inverted_index.improvement | 190 |
| abstract_inverted_index.independent | 15 |
| abstract_inverted_index.necessarily | 46 |
| abstract_inverted_index.performance | 33 |
| abstract_inverted_index.properties. | 173 |
| abstract_inverted_index.utilization | 161, 197 |
| abstract_inverted_index.co-executing | 23 |
| abstract_inverted_index.degradation. | 35 |
| abstract_inverted_index.dramatically | 87 |
| abstract_inverted_index.experimental | 175 |
| abstract_inverted_index.configurable, | 113 |
| abstract_inverted_index.Multi-Instance | 1 |
| abstract_inverted_index.hardware-limited | 111 |
| abstract_inverted_index.state-of-the-art | 115, 231 |
| abstract_inverted_index.throughput-oriented | 182 |
| abstract_inverted_index.interference-related | 34 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.72449349 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |