Complementary Language Model and Parallel Bi-LRNN for False Trigger Mitigation Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.21437/interspeech.2020-3238
False triggers in voice assistants are unintended invocations of the assistant, which not only degrade the user experience but may also compromise privacy. False trigger mitigation (FTM) is a process to detect the false trigger events and respond appropriately to the user. In this paper, we propose a novel solution to the FTM problem by introducing a parallel ASR decoding process with a special language model trained from "out-of-domain" data sources. Such language model is complementary to the existing language model optimized for the assistant task. A bidirectional lattice RNN (Bi-LRNN) classifier trained from the lattices generated by the complementary language model shows a $38.34\%$ relative reduction of the false trigger (FT) rate at the fixed rate of $0.4\%$ false suppression (FS) of correct invocations, compared to the current Bi-LRNN model. In addition, we propose to train a parallel Bi-LRNN model based on the decoding lattices from both language models, and examine various ways of implementation. The resulting model leads to further reduction in the false trigger rate by $10.8\%$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21437/interspeech.2020-3238
- OA Status
- green
- References
- 12
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3070633328
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3070633328Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21437/interspeech.2020-3238Digital Object Identifier
- Title
-
Complementary Language Model and Parallel Bi-LRNN for False Trigger MitigationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-25Full publication date if available
- Authors
-
Rishika Agarwal, Xiaochuan Niu, Pranay Dighe, Srikanth Vishnubhotla, Sameer Badaskar, Devang NaikList of authors in order
- Landing page
-
https://doi.org/10.21437/interspeech.2020-3238Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.08113Direct OA link when available
- Concepts
-
Computer science, Decoding methods, Language model, Classifier (UML), Process (computing), False positive rate, Artificial intelligence, Natural language processing, Speech recognition, Algorithm, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3070633328 |
|---|---|
| doi | https://doi.org/10.21437/interspeech.2020-3238 |
| ids.doi | https://doi.org/10.21437/interspeech.2020-3238 |
| ids.mag | 3070633328 |
| ids.openalex | https://openalex.org/W3070633328 |
| fwci | 0.0 |
| type | preprint |
| title | Complementary Language Model and Parallel Bi-LRNN for False Trigger Mitigation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4292 |
| biblio.first_page | 4288 |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9929999709129333 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7757568359375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C57273362 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7591983675956726 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[1].display_name | Decoding methods |
| concepts[2].id | https://openalex.org/C137293760 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7243894338607788 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[2].display_name | Language model |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46551039814949036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4604085385799408 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C95922358 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45262548327445984 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5432725 |
| concepts[5].display_name | False positive rate |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35240766406059265 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3490777611732483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34245985746383667 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3222062289714813 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13819000124931335 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7757568359375 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/decoding-methods |
| keywords[1].score | 0.7591983675956726 |
| keywords[1].display_name | Decoding methods |
| keywords[2].id | https://openalex.org/keywords/language-model |
| keywords[2].score | 0.7243894338607788 |
| keywords[2].display_name | Language model |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.46551039814949036 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.4604085385799408 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/false-positive-rate |
| keywords[5].score | 0.45262548327445984 |
| keywords[5].display_name | False positive rate |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.35240766406059265 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.3490777611732483 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.34245985746383667 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3222062289714813 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/programming-language |
| keywords[10].score | 0.13819000124931335 |
| keywords[10].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.21437/interspeech.2020-3238 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Interspeech 2020 |
| locations[0].landing_page_url | https://doi.org/10.21437/interspeech.2020-3238 |
| locations[1].id | pmh:oai:arXiv.org:2008.08113 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2008.08113 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2008.08113 |
| locations[2].id | mag:3070633328 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2008.08113.pdf |
| locations[3].id | doi:10.48550/arxiv.2008.08113 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2008.08113 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5069892380 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Rishika Agarwal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rishika Agarwal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069092461 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiaochuan Niu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaochuan Niu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063425263 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pranay Dighe |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1311269955 |
| authorships[2].affiliations[0].raw_affiliation_string | Apple (Israel), Herzliya, Israel |
| authorships[2].institutions[0].id | https://openalex.org/I1311269955 |
| authorships[2].institutions[0].ror | https://ror.org/04ehjr030 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1311269955, https://openalex.org/I4210153776 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Apple (Israel) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pranay Dighe |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Apple (Israel), Herzliya, Israel |
| authorships[3].author.id | https://openalex.org/A5080301608 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Srikanth Vishnubhotla |
| authorships[3].countries | IL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1311269955 |
| authorships[3].affiliations[0].raw_affiliation_string | Apple (Israel), Herzliya, Israel |
| authorships[3].institutions[0].id | https://openalex.org/I1311269955 |
| authorships[3].institutions[0].ror | https://ror.org/04ehjr030 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1311269955, https://openalex.org/I4210153776 |
| authorships[3].institutions[0].country_code | IL |
| authorships[3].institutions[0].display_name | Apple (Israel) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Srikanth Vishnubhotla |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Apple (Israel), Herzliya, Israel |
| authorships[4].author.id | https://openalex.org/A5024304628 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sameer Badaskar |
| authorships[4].countries | IL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1311269955 |
| authorships[4].affiliations[0].raw_affiliation_string | Apple (Israel), Herzliya, Israel |
| authorships[4].institutions[0].id | https://openalex.org/I1311269955 |
| authorships[4].institutions[0].ror | https://ror.org/04ehjr030 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1311269955, https://openalex.org/I4210153776 |
| authorships[4].institutions[0].country_code | IL |
| authorships[4].institutions[0].display_name | Apple (Israel) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sameer Badaskar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Apple (Israel), Herzliya, Israel |
| authorships[5].author.id | https://openalex.org/A5113880378 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-7838-1623 |
| authorships[5].author.display_name | Devang Naik |
| authorships[5].countries | IL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1311269955 |
| authorships[5].affiliations[0].raw_affiliation_string | Apple (Israel), Herzliya, Israel |
| authorships[5].institutions[0].id | https://openalex.org/I1311269955 |
| authorships[5].institutions[0].ror | https://ror.org/04ehjr030 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1311269955, https://openalex.org/I4210153776 |
| authorships[5].institutions[0].country_code | IL |
| authorships[5].institutions[0].display_name | Apple (Israel) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Devang Naik |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Apple (Israel), Herzliya, Israel |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.08113 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Complementary Language Model and Parallel Bi-LRNN for False Trigger Mitigation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W3097759552, https://openalex.org/W3204434311, https://openalex.org/W2951718774, https://openalex.org/W2976556660, https://openalex.org/W3190075653, https://openalex.org/W2953192606, https://openalex.org/W3097961476, https://openalex.org/W2573866231, https://openalex.org/W3090830192, https://openalex.org/W3199016780, https://openalex.org/W3034934392, https://openalex.org/W2895217092, https://openalex.org/W2961989283, https://openalex.org/W3190530808, https://openalex.org/W2804651231, https://openalex.org/W2747545581, https://openalex.org/W2889425414, https://openalex.org/W3199045806, https://openalex.org/W2138660131, https://openalex.org/W2787032417 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.08113 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.08113 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.08113 |
| primary_location.id | doi:10.21437/interspeech.2020-3238 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Interspeech 2020 |
| primary_location.landing_page_url | https://doi.org/10.21437/interspeech.2020-3238 |
| publication_date | 2020-10-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2511962886, https://openalex.org/W2936167188, https://openalex.org/W3015574151, https://openalex.org/W2783652918, https://openalex.org/W2797759721, https://openalex.org/W2131342762, https://openalex.org/W2889511491, https://openalex.org/W2887080793, https://openalex.org/W2972549707, https://openalex.org/W2150884987, https://openalex.org/W2963454111, https://openalex.org/W3015480556 |
| referenced_works_count | 12 |
| abstract_inverted_index.A | 86 |
| abstract_inverted_index.a | 28, 47, 56, 62, 103, 137 |
| abstract_inverted_index.In | 42, 131 |
| abstract_inverted_index.at | 113 |
| abstract_inverted_index.by | 54, 97, 168 |
| abstract_inverted_index.in | 2, 163 |
| abstract_inverted_index.is | 27, 74 |
| abstract_inverted_index.of | 8, 107, 117, 122, 154 |
| abstract_inverted_index.on | 142 |
| abstract_inverted_index.to | 30, 39, 50, 76, 126, 135, 160 |
| abstract_inverted_index.we | 45, 133 |
| abstract_inverted_index.ASR | 58 |
| abstract_inverted_index.FTM | 52 |
| abstract_inverted_index.RNN | 89 |
| abstract_inverted_index.The | 156 |
| abstract_inverted_index.and | 36, 150 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.but | 18 |
| abstract_inverted_index.for | 82 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.not | 12 |
| abstract_inverted_index.the | 9, 15, 32, 40, 51, 77, 83, 94, 98, 108, 114, 127, 143, 164 |
| abstract_inverted_index.(FS) | 121 |
| abstract_inverted_index.(FT) | 111 |
| abstract_inverted_index.Such | 71 |
| abstract_inverted_index.also | 20 |
| abstract_inverted_index.both | 147 |
| abstract_inverted_index.data | 69 |
| abstract_inverted_index.from | 67, 93, 146 |
| abstract_inverted_index.only | 13 |
| abstract_inverted_index.rate | 112, 116, 167 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.user | 16 |
| abstract_inverted_index.ways | 153 |
| abstract_inverted_index.with | 61 |
| abstract_inverted_index.(FTM) | 26 |
| abstract_inverted_index.False | 0, 23 |
| abstract_inverted_index.based | 141 |
| abstract_inverted_index.false | 33, 109, 119, 165 |
| abstract_inverted_index.fixed | 115 |
| abstract_inverted_index.leads | 159 |
| abstract_inverted_index.model | 65, 73, 80, 101, 140, 158 |
| abstract_inverted_index.novel | 48 |
| abstract_inverted_index.shows | 102 |
| abstract_inverted_index.task. | 85 |
| abstract_inverted_index.train | 136 |
| abstract_inverted_index.user. | 41 |
| abstract_inverted_index.voice | 3 |
| abstract_inverted_index.which | 11 |
| abstract_inverted_index.detect | 31 |
| abstract_inverted_index.events | 35 |
| abstract_inverted_index.model. | 130 |
| abstract_inverted_index.paper, | 44 |
| abstract_inverted_index.$0.4\%$ | 118 |
| abstract_inverted_index.Bi-LRNN | 129, 139 |
| abstract_inverted_index.correct | 123 |
| abstract_inverted_index.current | 128 |
| abstract_inverted_index.degrade | 14 |
| abstract_inverted_index.examine | 151 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.lattice | 88 |
| abstract_inverted_index.models, | 149 |
| abstract_inverted_index.problem | 53 |
| abstract_inverted_index.process | 29, 60 |
| abstract_inverted_index.propose | 46, 134 |
| abstract_inverted_index.respond | 37 |
| abstract_inverted_index.special | 63 |
| abstract_inverted_index.trained | 66, 92 |
| abstract_inverted_index.trigger | 24, 34, 110, 166 |
| abstract_inverted_index.various | 152 |
| abstract_inverted_index.compared | 125 |
| abstract_inverted_index.decoding | 59, 144 |
| abstract_inverted_index.existing | 78 |
| abstract_inverted_index.language | 64, 72, 79, 100, 148 |
| abstract_inverted_index.lattices | 95, 145 |
| abstract_inverted_index.parallel | 57, 138 |
| abstract_inverted_index.privacy. | 22 |
| abstract_inverted_index.relative | 105 |
| abstract_inverted_index.solution | 49 |
| abstract_inverted_index.sources. | 70 |
| abstract_inverted_index.triggers | 1 |
| abstract_inverted_index.$10.8\%$. | 169 |
| abstract_inverted_index.$38.34\%$ | 104 |
| abstract_inverted_index.(Bi-LRNN) | 90 |
| abstract_inverted_index.addition, | 132 |
| abstract_inverted_index.assistant | 84 |
| abstract_inverted_index.generated | 96 |
| abstract_inverted_index.optimized | 81 |
| abstract_inverted_index.reduction | 106, 162 |
| abstract_inverted_index.resulting | 157 |
| abstract_inverted_index.assistant, | 10 |
| abstract_inverted_index.assistants | 4 |
| abstract_inverted_index.classifier | 91 |
| abstract_inverted_index.compromise | 21 |
| abstract_inverted_index.experience | 17 |
| abstract_inverted_index.mitigation | 25 |
| abstract_inverted_index.unintended | 6 |
| abstract_inverted_index.introducing | 55 |
| abstract_inverted_index.invocations | 7 |
| abstract_inverted_index.suppression | 120 |
| abstract_inverted_index.invocations, | 124 |
| abstract_inverted_index.appropriately | 38 |
| abstract_inverted_index.bidirectional | 87 |
| abstract_inverted_index.complementary | 75, 99 |
| abstract_inverted_index."out-of-domain" | 68 |
| abstract_inverted_index.implementation. | 155 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.09068386 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |