Complex Factor Analysis and Extensions Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1109/tsp.2017.2780047
Many subspace-based array signal processing algorithms assume that the noise is spatially white. In this case, the noise covariance matrix is a multiple of the identity and the eigenvectors of the data covariance matrix are not affected by it. If the noise covariance is an unknown arbitrary diagonal (e.g., for an uncalibrated array), the eigenvalue decomposition leads to incorrect subspace estimates and it has to be replaced by a more general “factor analysis” decomposition (FA), which then reveals all relevant information. We consider this data model and several extensions where the noise covariance matrix has a more general structure, such as banded, sparse, block diagonal, and cases, where we have multiple data covariance matrices that share the same noise covariance matrix. Starting from a nonlinear weighted least squares formulation, we propose new estimation algorithms for both classical FA and its extensions. The optimization is based on Gauss–Newton gradient descent. Generally, this leads to an iteration involving the inversion of a very large matrix. Using the structure of the problem, we show how this can be reduced to the inversion of a matrix with dimension equal to the number of unknown noise covariance parameters. This results in new algorithms that have faster numerical convergence and lower complexity compared to several maximum-likelihood based algorithms that could be considered state of the art. The new algorithms scale well to large dimensions and can replace eigenvalue decompositions in many applications even if the noise can be assumed to be white.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tsp.2017.2780047
- OA Status
- green
- Cited By
- 12
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2773200628
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2773200628Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tsp.2017.2780047Digital Object Identifier
- Title
-
Complex Factor Analysis and ExtensionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-12-04Full publication date if available
- Authors
-
Ahmad Mouri Sardarabadi, A. van VeenList of authors in order
- Landing page
-
https://doi.org/10.1109/tsp.2017.2780047Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1dDirect OA link when available
- Concepts
-
Mathematics, Covariance matrix, Estimation of covariance matrices, Eigendecomposition of a matrix, Covariance, Algorithm, Diagonal matrix, Eigenvalues and eigenvectors, Identity matrix, Covariance intersection, Applied mathematics, Mathematical optimization, Diagonal, Statistics, Quantum mechanics, Physics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1, 2021: 1, 2020: 1, 2019: 3Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2773200628 |
|---|---|
| doi | https://doi.org/10.1109/tsp.2017.2780047 |
| ids.doi | https://doi.org/10.1109/tsp.2017.2780047 |
| ids.mag | 2773200628 |
| ids.openalex | https://openalex.org/W2773200628 |
| fwci | 1.41646489 |
| type | article |
| title | Complex Factor Analysis and Extensions |
| awards[0].id | https://openalex.org/G4779391133 |
| awards[0].funder_id | https://openalex.org/F4320321800 |
| awards[0].display_name | |
| awards[0].funder_award_id | 614.00.005 |
| awards[0].funder_display_name | Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
| biblio.issue | 4 |
| biblio.volume | 66 |
| biblio.last_page | 967 |
| biblio.first_page | 954 |
| topics[0].id | https://openalex.org/T10931 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Direction-of-Arrival Estimation Techniques |
| topics[1].id | https://openalex.org/T10801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[2].id | https://openalex.org/T10891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9878000020980835 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Radar Systems and Signal Processing |
| funders[0].id | https://openalex.org/F4320321800 |
| funders[0].ror | https://ror.org/04jsz6e67 |
| funders[0].display_name | Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6369209885597229 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C185142706 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6309975981712341 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[1].display_name | Covariance matrix |
| concepts[2].id | https://openalex.org/C180877172 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6168684363365173 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5401390 |
| concepts[2].display_name | Estimation of covariance matrices |
| concepts[3].id | https://openalex.org/C169756996 |
| concepts[3].level | 3 |
| concepts[3].score | 0.610152006149292 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q194919 |
| concepts[3].display_name | Eigendecomposition of a matrix |
| concepts[4].id | https://openalex.org/C178650346 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5872645974159241 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[4].display_name | Covariance |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5752326846122742 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C113313756 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4577956795692444 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q332791 |
| concepts[6].display_name | Diagonal matrix |
| concepts[7].id | https://openalex.org/C158693339 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44754448533058167 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[7].display_name | Eigenvalues and eigenvectors |
| concepts[8].id | https://openalex.org/C134567657 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42619380354881287 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193794 |
| concepts[8].display_name | Identity matrix |
| concepts[9].id | https://openalex.org/C83042196 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4123866558074951 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5178898 |
| concepts[9].display_name | Covariance intersection |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3578299880027771 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35243314504623413 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C130367717 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3258854150772095 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[12].display_name | Diagonal |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1424543559551239 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.6369209885597229 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/covariance-matrix |
| keywords[1].score | 0.6309975981712341 |
| keywords[1].display_name | Covariance matrix |
| keywords[2].id | https://openalex.org/keywords/estimation-of-covariance-matrices |
| keywords[2].score | 0.6168684363365173 |
| keywords[2].display_name | Estimation of covariance matrices |
| keywords[3].id | https://openalex.org/keywords/eigendecomposition-of-a-matrix |
| keywords[3].score | 0.610152006149292 |
| keywords[3].display_name | Eigendecomposition of a matrix |
| keywords[4].id | https://openalex.org/keywords/covariance |
| keywords[4].score | 0.5872645974159241 |
| keywords[4].display_name | Covariance |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5752326846122742 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/diagonal-matrix |
| keywords[6].score | 0.4577956795692444 |
| keywords[6].display_name | Diagonal matrix |
| keywords[7].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[7].score | 0.44754448533058167 |
| keywords[7].display_name | Eigenvalues and eigenvectors |
| keywords[8].id | https://openalex.org/keywords/identity-matrix |
| keywords[8].score | 0.42619380354881287 |
| keywords[8].display_name | Identity matrix |
| keywords[9].id | https://openalex.org/keywords/covariance-intersection |
| keywords[9].score | 0.4123866558074951 |
| keywords[9].display_name | Covariance intersection |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.3578299880027771 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.35243314504623413 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/diagonal |
| keywords[12].score | 0.3258854150772095 |
| keywords[12].display_name | Diagonal |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.1424543559551239 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/tsp.2017.2780047 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S168680287 |
| locations[0].source.issn | 1053-587X, 1941-0476 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1053-587X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Signal Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Signal Processing |
| locations[0].landing_page_url | https://doi.org/10.1109/tsp.2017.2780047 |
| locations[1].id | pmh:tud:oai:tudelft.nl:uuid:13293f3d-0380-4416-950d-613661b76a1d |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401843 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[1].source.host_organization | https://openalex.org/I1322597698 |
| locations[1].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[1].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[1].license | other-oa |
| locations[1].pdf_url | http://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1d |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Transactions on Signal Processing, 66(4) |
| locations[1].landing_page_url | http://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1d |
| locations[2].id | pmh:rug:oai:pure.rug.nl:publications/90785b8a-66e3-47f1-86ab-b49d01b11e29 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401843 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[2].source.host_organization | https://openalex.org/I1322597698 |
| locations[2].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[2].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Signal Processing, 66(4), 954 - 967 |
| locations[2].landing_page_url | https://research.rug.nl/en/publications/90785b8a-66e3-47f1-86ab-b49d01b11e29 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029222911 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7207-9665 |
| authorships[0].author.display_name | Ahmad Mouri Sardarabadi |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].raw_affiliation_string | The Kapteyn Astronomical Institute, Groningen University, Groningen, CP, The Netherlands |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I98358874 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Electrical Engineering, Delft University of Technology, Delft, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I98358874 |
| authorships[0].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Delft University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmad Mouri Sardarabadi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Electrical Engineering, Delft University of Technology, Delft, The Netherlands, The Kapteyn Astronomical Institute, Groningen University, Groningen, CP, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5011134257 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4249-585X |
| authorships[1].author.display_name | A. van Veen |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering, Delft University of Technology, Delft, Delft, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I98358874 |
| authorships[1].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Delft University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Alle-Jan van der Veen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Electrical Engineering, Delft University of Technology, Delft, Delft, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1d |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Complex Factor Analysis and Extensions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10931 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Direction-of-Arrival Estimation Techniques |
| related_works | https://openalex.org/W69681753, https://openalex.org/W1974588588, https://openalex.org/W2126916073, https://openalex.org/W1627656821, https://openalex.org/W2964105278, https://openalex.org/W2018001152, https://openalex.org/W2118568436, https://openalex.org/W2139396625, https://openalex.org/W2572601863, https://openalex.org/W2097670344 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:tud:oai:tudelft.nl:uuid:13293f3d-0380-4416-950d-613661b76a1d |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401843 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Data Archiving and Networked Services (DANS) |
| best_oa_location.source.host_organization | https://openalex.org/I1322597698 |
| best_oa_location.source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1322597698 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | http://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1d |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | IEEE Transactions on Signal Processing, 66(4) |
| best_oa_location.landing_page_url | http://resolver.tudelft.nl/uuid:13293f3d-0380-4416-950d-613661b76a1d |
| primary_location.id | doi:10.1109/tsp.2017.2780047 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S168680287 |
| primary_location.source.issn | 1053-587X, 1941-0476 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1053-587X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Signal Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Signal Processing |
| primary_location.landing_page_url | https://doi.org/10.1109/tsp.2017.2780047 |
| publication_date | 2017-12-04 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1814500939, https://openalex.org/W2795739039, https://openalex.org/W2210822283, https://openalex.org/W2064191652, https://openalex.org/W1666670079, https://openalex.org/W1971085322, https://openalex.org/W1989125213, https://openalex.org/W2124208643, https://openalex.org/W2100740089, https://openalex.org/W2066306397, https://openalex.org/W4231889826, https://openalex.org/W2076818396, https://openalex.org/W1984977150, https://openalex.org/W2208136017, https://openalex.org/W1968398095, https://openalex.org/W1968135884, https://openalex.org/W6631207072, https://openalex.org/W2030741364, https://openalex.org/W4211251910, https://openalex.org/W6637766136, https://openalex.org/W2128131274, https://openalex.org/W2019945856, https://openalex.org/W4292494783, https://openalex.org/W2462634734, https://openalex.org/W2129553513, https://openalex.org/W2078483536, https://openalex.org/W2041626758, https://openalex.org/W1481507124, https://openalex.org/W2044394043, https://openalex.org/W2611328865, https://openalex.org/W2084547098, https://openalex.org/W2145962650, https://openalex.org/W2002639136, https://openalex.org/W4241632211, https://openalex.org/W2104738928, https://openalex.org/W2115489809, https://openalex.org/W2052797926, https://openalex.org/W2112169767, https://openalex.org/W2147626801, https://openalex.org/W1996794221, https://openalex.org/W1987566845, https://openalex.org/W3105772645, https://openalex.org/W2800047181, https://openalex.org/W250076511, https://openalex.org/W3100429042, https://openalex.org/W4213099427, https://openalex.org/W1965392255, https://openalex.org/W3102932901, https://openalex.org/W1521023302, https://openalex.org/W291003596, https://openalex.org/W1748168094, https://openalex.org/W2063698478, https://openalex.org/W4251834819, https://openalex.org/W2137945018, https://openalex.org/W1500650958 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 21, 68, 95, 123, 159, 180 |
| abstract_inverted_index.FA | 137 |
| abstract_inverted_index.If | 39 |
| abstract_inverted_index.In | 13 |
| abstract_inverted_index.We | 81 |
| abstract_inverted_index.an | 44, 50, 153 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.be | 65, 174, 214, 241, 244 |
| abstract_inverted_index.by | 37, 67 |
| abstract_inverted_index.if | 237 |
| abstract_inverted_index.in | 195, 233 |
| abstract_inverted_index.is | 10, 20, 43, 143 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.of | 23, 29, 158, 166, 179, 188, 217 |
| abstract_inverted_index.on | 145 |
| abstract_inverted_index.to | 57, 64, 152, 176, 185, 207, 225, 243 |
| abstract_inverted_index.we | 108, 129, 169 |
| abstract_inverted_index.The | 141, 220 |
| abstract_inverted_index.all | 78 |
| abstract_inverted_index.and | 26, 61, 86, 105, 138, 203, 228 |
| abstract_inverted_index.are | 34 |
| abstract_inverted_index.can | 173, 229, 240 |
| abstract_inverted_index.for | 49, 134 |
| abstract_inverted_index.has | 63, 94 |
| abstract_inverted_index.how | 171 |
| abstract_inverted_index.it. | 38 |
| abstract_inverted_index.its | 139 |
| abstract_inverted_index.new | 131, 196, 221 |
| abstract_inverted_index.not | 35 |
| abstract_inverted_index.the | 8, 16, 24, 27, 30, 40, 53, 90, 116, 156, 164, 167, 177, 186, 218, 238 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.This | 193 |
| abstract_inverted_index.art. | 219 |
| abstract_inverted_index.both | 135 |
| abstract_inverted_index.data | 31, 84, 111 |
| abstract_inverted_index.even | 236 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.have | 109, 199 |
| abstract_inverted_index.many | 234 |
| abstract_inverted_index.more | 69, 96 |
| abstract_inverted_index.same | 117 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.such | 99 |
| abstract_inverted_index.that | 7, 114, 198, 212 |
| abstract_inverted_index.then | 76 |
| abstract_inverted_index.this | 14, 83, 150, 172 |
| abstract_inverted_index.very | 160 |
| abstract_inverted_index.well | 224 |
| abstract_inverted_index.with | 182 |
| abstract_inverted_index.(FA), | 74 |
| abstract_inverted_index.Using | 163 |
| abstract_inverted_index.array | 2 |
| abstract_inverted_index.based | 144, 210 |
| abstract_inverted_index.block | 103 |
| abstract_inverted_index.case, | 15 |
| abstract_inverted_index.could | 213 |
| abstract_inverted_index.equal | 184 |
| abstract_inverted_index.large | 161, 226 |
| abstract_inverted_index.leads | 56, 151 |
| abstract_inverted_index.least | 126 |
| abstract_inverted_index.lower | 204 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.noise | 9, 17, 41, 91, 118, 190, 239 |
| abstract_inverted_index.scale | 223 |
| abstract_inverted_index.share | 115 |
| abstract_inverted_index.state | 216 |
| abstract_inverted_index.where | 89, 107 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.(e.g., | 48 |
| abstract_inverted_index.assume | 6 |
| abstract_inverted_index.cases, | 106 |
| abstract_inverted_index.faster | 200 |
| abstract_inverted_index.matrix | 19, 33, 93, 181 |
| abstract_inverted_index.number | 187 |
| abstract_inverted_index.signal | 3 |
| abstract_inverted_index.white. | 12, 245 |
| abstract_inverted_index.array), | 52 |
| abstract_inverted_index.assumed | 242 |
| abstract_inverted_index.banded, | 101 |
| abstract_inverted_index.general | 70, 97 |
| abstract_inverted_index.matrix. | 120, 162 |
| abstract_inverted_index.propose | 130 |
| abstract_inverted_index.reduced | 175 |
| abstract_inverted_index.replace | 230 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.reveals | 77 |
| abstract_inverted_index.several | 87, 208 |
| abstract_inverted_index.sparse, | 102 |
| abstract_inverted_index.squares | 127 |
| abstract_inverted_index.unknown | 45, 189 |
| abstract_inverted_index.Starting | 121 |
| abstract_inverted_index.affected | 36 |
| abstract_inverted_index.compared | 206 |
| abstract_inverted_index.consider | 82 |
| abstract_inverted_index.descent. | 148 |
| abstract_inverted_index.diagonal | 47 |
| abstract_inverted_index.gradient | 147 |
| abstract_inverted_index.identity | 25 |
| abstract_inverted_index.matrices | 113 |
| abstract_inverted_index.multiple | 22, 110 |
| abstract_inverted_index.problem, | 168 |
| abstract_inverted_index.relevant | 79 |
| abstract_inverted_index.replaced | 66 |
| abstract_inverted_index.subspace | 59 |
| abstract_inverted_index.weighted | 125 |
| abstract_inverted_index.arbitrary | 46 |
| abstract_inverted_index.classical | 136 |
| abstract_inverted_index.diagonal, | 104 |
| abstract_inverted_index.dimension | 183 |
| abstract_inverted_index.estimates | 60 |
| abstract_inverted_index.incorrect | 58 |
| abstract_inverted_index.inversion | 157, 178 |
| abstract_inverted_index.involving | 155 |
| abstract_inverted_index.iteration | 154 |
| abstract_inverted_index.nonlinear | 124 |
| abstract_inverted_index.numerical | 201 |
| abstract_inverted_index.spatially | 11 |
| abstract_inverted_index.structure | 165 |
| abstract_inverted_index.“factor | 71 |
| abstract_inverted_index.Generally, | 149 |
| abstract_inverted_index.algorithms | 5, 133, 197, 211, 222 |
| abstract_inverted_index.complexity | 205 |
| abstract_inverted_index.considered | 215 |
| abstract_inverted_index.covariance | 18, 32, 42, 92, 112, 119, 191 |
| abstract_inverted_index.dimensions | 227 |
| abstract_inverted_index.eigenvalue | 54, 231 |
| abstract_inverted_index.estimation | 132 |
| abstract_inverted_index.extensions | 88 |
| abstract_inverted_index.processing | 4 |
| abstract_inverted_index.structure, | 98 |
| abstract_inverted_index.analysis” | 72 |
| abstract_inverted_index.convergence | 202 |
| abstract_inverted_index.extensions. | 140 |
| abstract_inverted_index.parameters. | 192 |
| abstract_inverted_index.applications | 235 |
| abstract_inverted_index.eigenvectors | 28 |
| abstract_inverted_index.formulation, | 128 |
| abstract_inverted_index.information. | 80 |
| abstract_inverted_index.optimization | 142 |
| abstract_inverted_index.uncalibrated | 51 |
| abstract_inverted_index.decomposition | 55, 73 |
| abstract_inverted_index.Gauss–Newton | 146 |
| abstract_inverted_index.decompositions | 232 |
| abstract_inverted_index.subspace-based | 1 |
| abstract_inverted_index.maximum-likelihood | 209 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.82526683 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |