Complexity of COVID-19 Dynamics Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/e24010050
With population explosion and globalization, the spread of infectious diseases has been a major concern. In 2019, a newly identified type of Coronavirus caused an outbreak of respiratory illness, popularly known as COVID-19, and became a pandemic. Although enormous efforts have been made to understand the spread of COVID-19, our knowledge of the COVID-19 dynamics still remains limited. The present study employs the concepts of chaos theory to examine the temporal dynamic complexity of COVID-19 around the world. The false nearest neighbor (FNN) method is applied to determine the dimensionality and, hence, the complexity of the COVID-19 dynamics. The methodology involves: (1) reconstruction of a single-variable COVID-19 time series in a multi-dimensional phase space to represent the underlying dynamics; and (2) identification of “false” neighbors in the reconstructed phase space and estimation of the dimension of the COVID-19 series. For implementation, COVID-19 data from 40 countries/regions around the world are studied. Two types of COVID-19 data are analyzed: (1) daily COVID-19 cases; and (2) daily COVID-19 deaths. The results for the 40 countries/regions indicate that: (1) the dynamics of COVID-19 cases exhibit low- to medium-level complexity, with dimensionality in the range 3 to 7; and (2) the dynamics of COVID-19 deaths exhibit complexity anywhere from low to high, with dimensionality ranging from 3 to 13. The results also suggest that the complexity of the dynamics of COVID-19 deaths is greater than or at least equal to that of the dynamics of COVID-19 cases for most (three-fourths) of the countries/regions. These results have important implications for modeling and predicting the spread of COVID-19 (and other infectious diseases), especially in the identification of the appropriate complexity of models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e24010050
- https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522
- OA Status
- gold
- Cited By
- 17
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200590485
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200590485Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e24010050Digital Object Identifier
- Title
-
Complexity of COVID-19 DynamicsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-27Full publication date if available
- Authors
-
Bellie Sivakumar, B. DeepthiList of authors in order
- Landing page
-
https://doi.org/10.3390/e24010050Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522Direct OA link when available
- Concepts
-
Curse of dimensionality, Coronavirus disease 2019 (COVID-19), Pandemic, Population, Dimension (graph theory), Dynamics (music), Time series, Outbreak, Computer science, Mathematics, Econometrics, Statistics, Demography, Medicine, Infectious disease (medical specialty), Virology, Physics, Sociology, Pathology, Disease, Pure mathematics, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 9, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200590485 |
|---|---|
| doi | https://doi.org/10.3390/e24010050 |
| ids.doi | https://doi.org/10.3390/e24010050 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35052076 |
| ids.openalex | https://openalex.org/W4200590485 |
| fwci | 1.27214152 |
| type | article |
| title | Complexity of COVID-19 Dynamics |
| biblio.issue | 1 |
| biblio.volume | 24 |
| biblio.last_page | 50 |
| biblio.first_page | 50 |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| topics[1].id | https://openalex.org/T11270 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Complex Systems and Time Series Analysis |
| topics[2].id | https://openalex.org/T12946 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9754999876022339 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Fractal and DNA sequence analysis |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C111030470 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6671557426452637 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[0].display_name | Curse of dimensionality |
| concepts[1].id | https://openalex.org/C3008058167 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6637094020843506 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[1].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[2].id | https://openalex.org/C89623803 |
| concepts[2].level | 5 |
| concepts[2].score | 0.608489990234375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[2].display_name | Pandemic |
| concepts[3].id | https://openalex.org/C2908647359 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4771825075149536 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[3].display_name | Population |
| concepts[4].id | https://openalex.org/C33676613 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46753236651420593 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[4].display_name | Dimension (graph theory) |
| concepts[5].id | https://openalex.org/C145912823 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44783711433410645 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[5].display_name | Dynamics (music) |
| concepts[6].id | https://openalex.org/C151406439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4343799948692322 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time series |
| concepts[7].id | https://openalex.org/C116675565 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4276329278945923 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[7].display_name | Outbreak |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3591907024383545 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33243441581726074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32200318574905396 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3013608455657959 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C149923435 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20722252130508423 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[12].display_name | Demography |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.17288541793823242 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C524204448 |
| concepts[14].level | 3 |
| concepts[14].score | 0.13536971807479858 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[14].display_name | Infectious disease (medical specialty) |
| concepts[15].id | https://openalex.org/C159047783 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12912437319755554 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[15].display_name | Virology |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.09000429511070251 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C142724271 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[18].display_name | Pathology |
| concepts[19].id | https://openalex.org/C2779134260 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[19].display_name | Disease |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C24890656 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[21].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[0].score | 0.6671557426452637 |
| keywords[0].display_name | Curse of dimensionality |
| keywords[1].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[1].score | 0.6637094020843506 |
| keywords[1].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[2].id | https://openalex.org/keywords/pandemic |
| keywords[2].score | 0.608489990234375 |
| keywords[2].display_name | Pandemic |
| keywords[3].id | https://openalex.org/keywords/population |
| keywords[3].score | 0.4771825075149536 |
| keywords[3].display_name | Population |
| keywords[4].id | https://openalex.org/keywords/dimension |
| keywords[4].score | 0.46753236651420593 |
| keywords[4].display_name | Dimension (graph theory) |
| keywords[5].id | https://openalex.org/keywords/dynamics |
| keywords[5].score | 0.44783711433410645 |
| keywords[5].display_name | Dynamics (music) |
| keywords[6].id | https://openalex.org/keywords/time-series |
| keywords[6].score | 0.4343799948692322 |
| keywords[6].display_name | Time series |
| keywords[7].id | https://openalex.org/keywords/outbreak |
| keywords[7].score | 0.4276329278945923 |
| keywords[7].display_name | Outbreak |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3591907024383545 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.33243441581726074 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.32200318574905396 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.3013608455657959 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/demography |
| keywords[12].score | 0.20722252130508423 |
| keywords[12].display_name | Demography |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.17288541793823242 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/infectious-disease |
| keywords[14].score | 0.13536971807479858 |
| keywords[14].display_name | Infectious disease (medical specialty) |
| keywords[15].id | https://openalex.org/keywords/virology |
| keywords[15].score | 0.12912437319755554 |
| keywords[15].display_name | Virology |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.09000429511070251 |
| keywords[16].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/e24010050 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e24010050 |
| locations[1].id | pmid:35052076 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35052076 |
| locations[2].id | pmh:oai:doaj.org/article:da332be9d88245258225d9e15fc58166 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 24, Iss 1, p 50 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/da332be9d88245258225d9e15fc58166 |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/24/1/50/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy; Volume 24; Issue 1; Pages: 50 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e24010050 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8775155 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8775155 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5008084305 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0523-890X |
| authorships[0].author.display_name | Bellie Sivakumar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| authorships[0].institutions[0].id | https://openalex.org/I162827531 |
| authorships[0].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bellie Sivakumar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| authorships[1].author.id | https://openalex.org/A5079098881 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | B. Deepthi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| authorships[1].institutions[0].id | https://openalex.org/I162827531 |
| authorships[1].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bhadran Deepthi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Complexity of COVID-19 Dynamics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W2373635223, https://openalex.org/W2412355096, https://openalex.org/W1990012352, https://openalex.org/W2431766951, https://openalex.org/W4385969441, https://openalex.org/W127458931, https://openalex.org/W2362266265, https://openalex.org/W3028429280, https://openalex.org/W2557977292, https://openalex.org/W408992594 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e24010050 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e24010050 |
| primary_location.id | doi:10.3390/e24010050 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/24/1/50/pdf?version=1640670522 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e24010050 |
| publication_date | 2021-12-27 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3016069520, https://openalex.org/W3020110871, https://openalex.org/W3126834443, https://openalex.org/W3109183006, https://openalex.org/W3096272784, https://openalex.org/W6788058445, https://openalex.org/W3087347130, https://openalex.org/W3120397283, https://openalex.org/W3041001958, https://openalex.org/W1998131627, https://openalex.org/W2070136747, https://openalex.org/W2015808335, https://openalex.org/W2053000491, https://openalex.org/W2065317389, https://openalex.org/W2012620166, https://openalex.org/W2018640594, https://openalex.org/W2897777846, https://openalex.org/W3039946176, https://openalex.org/W3198131912, https://openalex.org/W2147166346, https://openalex.org/W2053293344, https://openalex.org/W2053331423, https://openalex.org/W2065075114, https://openalex.org/W3104372059, https://openalex.org/W3016748877, https://openalex.org/W3010131837, https://openalex.org/W3018782651, https://openalex.org/W3020001547, https://openalex.org/W3003668884, https://openalex.org/W3081920968, https://openalex.org/W3137817625, https://openalex.org/W3009909874, https://openalex.org/W3020762743, https://openalex.org/W3121088591, https://openalex.org/W3124047348, https://openalex.org/W2549742044, https://openalex.org/W3023233973, https://openalex.org/W2031365860, https://openalex.org/W1984391316, https://openalex.org/W2492703958, https://openalex.org/W4299429830, https://openalex.org/W1975964493, https://openalex.org/W4239340087, https://openalex.org/W2501514717, https://openalex.org/W2151850816, https://openalex.org/W2044994564, https://openalex.org/W2010461070, https://openalex.org/W2000356602, https://openalex.org/W2168763808, https://openalex.org/W2007723437, https://openalex.org/W2194100214, https://openalex.org/W2040704490, https://openalex.org/W1966425161, https://openalex.org/W2003837459, https://openalex.org/W2065566139, https://openalex.org/W2012198739, https://openalex.org/W2081120483, https://openalex.org/W4253033709, https://openalex.org/W2042805680, https://openalex.org/W2074755159, https://openalex.org/W2476232484, https://openalex.org/W6659413730, https://openalex.org/W2007835141, https://openalex.org/W1980085084, https://openalex.org/W3201725168, https://openalex.org/W3212566171, https://openalex.org/W3184753516, https://openalex.org/W3206679903, https://openalex.org/W2035740143, https://openalex.org/W3116402270, https://openalex.org/W2094300701 |
| referenced_works_count | 71 |
| abstract_inverted_index.3 | 191, 212 |
| abstract_inverted_index.a | 12, 17, 35, 104, 110 |
| abstract_inverted_index.40 | 144, 171 |
| abstract_inverted_index.7; | 193 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.an | 24 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.at | 232 |
| abstract_inverted_index.in | 109, 125, 188, 267 |
| abstract_inverted_index.is | 84, 228 |
| abstract_inverted_index.of | 7, 21, 26, 47, 51, 64, 73, 94, 103, 122, 132, 135, 153, 178, 198, 222, 225, 237, 240, 246, 260, 270, 274 |
| abstract_inverted_index.or | 231 |
| abstract_inverted_index.to | 43, 67, 86, 114, 183, 192, 206, 213, 235 |
| abstract_inverted_index.(1) | 101, 158, 175 |
| abstract_inverted_index.(2) | 120, 163, 195 |
| abstract_inverted_index.13. | 214 |
| abstract_inverted_index.For | 139 |
| abstract_inverted_index.The | 58, 78, 98, 167, 215 |
| abstract_inverted_index.Two | 151 |
| abstract_inverted_index.and | 3, 33, 119, 130, 162, 194, 256 |
| abstract_inverted_index.are | 149, 156 |
| abstract_inverted_index.for | 169, 243, 254 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.low | 205 |
| abstract_inverted_index.our | 49 |
| abstract_inverted_index.the | 5, 45, 52, 62, 69, 76, 88, 92, 95, 116, 126, 133, 136, 147, 170, 176, 189, 196, 220, 223, 238, 247, 258, 268, 271 |
| abstract_inverted_index.(and | 262 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 217 |
| abstract_inverted_index.and, | 90 |
| abstract_inverted_index.been | 11, 41 |
| abstract_inverted_index.data | 142, 155 |
| abstract_inverted_index.from | 143, 204, 211 |
| abstract_inverted_index.have | 40, 251 |
| abstract_inverted_index.low- | 182 |
| abstract_inverted_index.made | 42 |
| abstract_inverted_index.most | 244 |
| abstract_inverted_index.than | 230 |
| abstract_inverted_index.that | 219, 236 |
| abstract_inverted_index.time | 107 |
| abstract_inverted_index.type | 20 |
| abstract_inverted_index.with | 186, 208 |
| abstract_inverted_index.(FNN) | 82 |
| abstract_inverted_index.2019, | 16 |
| abstract_inverted_index.These | 249 |
| abstract_inverted_index.cases | 180, 242 |
| abstract_inverted_index.chaos | 65 |
| abstract_inverted_index.daily | 159, 164 |
| abstract_inverted_index.equal | 234 |
| abstract_inverted_index.false | 79 |
| abstract_inverted_index.high, | 207 |
| abstract_inverted_index.known | 30 |
| abstract_inverted_index.least | 233 |
| abstract_inverted_index.major | 13 |
| abstract_inverted_index.newly | 18 |
| abstract_inverted_index.other | 263 |
| abstract_inverted_index.phase | 112, 128 |
| abstract_inverted_index.range | 190 |
| abstract_inverted_index.space | 113, 129 |
| abstract_inverted_index.still | 55 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.that: | 174 |
| abstract_inverted_index.types | 152 |
| abstract_inverted_index.world | 148 |
| abstract_inverted_index.around | 75, 146 |
| abstract_inverted_index.became | 34 |
| abstract_inverted_index.cases; | 161 |
| abstract_inverted_index.caused | 23 |
| abstract_inverted_index.deaths | 200, 227 |
| abstract_inverted_index.hence, | 91 |
| abstract_inverted_index.method | 83 |
| abstract_inverted_index.series | 108 |
| abstract_inverted_index.spread | 6, 46, 259 |
| abstract_inverted_index.theory | 66 |
| abstract_inverted_index.world. | 77 |
| abstract_inverted_index.applied | 85 |
| abstract_inverted_index.deaths. | 166 |
| abstract_inverted_index.dynamic | 71 |
| abstract_inverted_index.efforts | 39 |
| abstract_inverted_index.employs | 61 |
| abstract_inverted_index.examine | 68 |
| abstract_inverted_index.exhibit | 181, 201 |
| abstract_inverted_index.greater | 229 |
| abstract_inverted_index.models. | 275 |
| abstract_inverted_index.nearest | 80 |
| abstract_inverted_index.present | 59 |
| abstract_inverted_index.ranging | 210 |
| abstract_inverted_index.remains | 56 |
| abstract_inverted_index.results | 168, 216, 250 |
| abstract_inverted_index.series. | 138 |
| abstract_inverted_index.suggest | 218 |
| abstract_inverted_index.Although | 37 |
| abstract_inverted_index.COVID-19 | 53, 74, 96, 106, 137, 141, 154, 160, 165, 179, 199, 226, 241, 261 |
| abstract_inverted_index.anywhere | 203 |
| abstract_inverted_index.concepts | 63 |
| abstract_inverted_index.concern. | 14 |
| abstract_inverted_index.diseases | 9 |
| abstract_inverted_index.dynamics | 54, 177, 197, 224, 239 |
| abstract_inverted_index.enormous | 38 |
| abstract_inverted_index.illness, | 28 |
| abstract_inverted_index.indicate | 173 |
| abstract_inverted_index.limited. | 57 |
| abstract_inverted_index.modeling | 255 |
| abstract_inverted_index.neighbor | 81 |
| abstract_inverted_index.outbreak | 25 |
| abstract_inverted_index.studied. | 150 |
| abstract_inverted_index.temporal | 70 |
| abstract_inverted_index.COVID-19, | 32, 48 |
| abstract_inverted_index.analyzed: | 157 |
| abstract_inverted_index.determine | 87 |
| abstract_inverted_index.dimension | 134 |
| abstract_inverted_index.dynamics. | 97 |
| abstract_inverted_index.dynamics; | 118 |
| abstract_inverted_index.explosion | 2 |
| abstract_inverted_index.important | 252 |
| abstract_inverted_index.involves: | 100 |
| abstract_inverted_index.knowledge | 50 |
| abstract_inverted_index.neighbors | 124 |
| abstract_inverted_index.pandemic. | 36 |
| abstract_inverted_index.popularly | 29 |
| abstract_inverted_index.represent | 115 |
| abstract_inverted_index.complexity | 72, 93, 202, 221, 273 |
| abstract_inverted_index.diseases), | 265 |
| abstract_inverted_index.especially | 266 |
| abstract_inverted_index.estimation | 131 |
| abstract_inverted_index.identified | 19 |
| abstract_inverted_index.infectious | 8, 264 |
| abstract_inverted_index.population | 1 |
| abstract_inverted_index.predicting | 257 |
| abstract_inverted_index.underlying | 117 |
| abstract_inverted_index.understand | 44 |
| abstract_inverted_index.Coronavirus | 22 |
| abstract_inverted_index.appropriate | 272 |
| abstract_inverted_index.complexity, | 185 |
| abstract_inverted_index.methodology | 99 |
| abstract_inverted_index.respiratory | 27 |
| abstract_inverted_index.“false” | 123 |
| abstract_inverted_index.implications | 253 |
| abstract_inverted_index.medium-level | 184 |
| abstract_inverted_index.reconstructed | 127 |
| abstract_inverted_index.dimensionality | 89, 187, 209 |
| abstract_inverted_index.globalization, | 4 |
| abstract_inverted_index.identification | 121, 269 |
| abstract_inverted_index.reconstruction | 102 |
| abstract_inverted_index.(three-fourths) | 245 |
| abstract_inverted_index.implementation, | 140 |
| abstract_inverted_index.single-variable | 105 |
| abstract_inverted_index.countries/regions | 145, 172 |
| abstract_inverted_index.multi-dimensional | 111 |
| abstract_inverted_index.countries/regions. | 248 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5008084305 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I162827531 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.81133825 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |