Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.11490
The advent of accessible Generative AI tools enables anyone to create and spread synthetic images on social media, often with the intention to mislead, thus posing a significant threat to online information integrity. Most existing Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations. To address this, our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach. These methods significantly improve model performance under real-world perturbations. Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations, with the best-performing model achieving a mean average precision increase of +22.53% compared to models without augmentations. The implementation is available at github.com/efthimia145/sid-composite-data-augmentation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.11490
- https://arxiv.org/pdf/2506.11490
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415068841
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415068841Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.11490Digital Object Identifier
- Title
-
Composite Data Augmentations for Synthetic Image Detection Against Real-World PerturbationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-13Full publication date if available
- Authors
-
Efthymia Amarantidou, Christos Koutlis, Symeon Papadopoulos, Panagiotis C. PetrantonakisList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.11490Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.11490Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.11490Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415068841 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.11490 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.11490 |
| ids.openalex | https://openalex.org/W4415068841 |
| fwci | |
| type | preprint |
| title | Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9125999808311462 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.11490 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.11490 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.11490 |
| locations[1].id | doi:10.48550/arxiv.2506.11490 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.11490 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5119950400 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Efthymia Amarantidou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amarantidou, Efthymia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024874767 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3682-408X |
| authorships[1].author.display_name | Christos Koutlis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Koutlis, Christos |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101490684 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0708-7431 |
| authorships[2].author.display_name | Symeon Papadopoulos |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Papadopoulos, Symeon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079993203 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9631-4327 |
| authorships[3].author.display_name | Panagiotis C. Petrantonakis |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Petrantonakis, Panagiotis C. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.11490 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9125999808311462 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.11490 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.11490 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.11490 |
| primary_location.id | pmh:oai:arXiv.org:2506.11490 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.11490 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.11490 |
| publication_date | 2025-06-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 26, 71, 80, 117 |
| abstract_inverted_index.AI | 5 |
| abstract_inverted_index.To | 58 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.at | 133 |
| abstract_inverted_index.by | 53, 65 |
| abstract_inverted_index.is | 131 |
| abstract_inverted_index.of | 2, 103, 122 |
| abstract_inverted_index.on | 15, 41 |
| abstract_inverted_index.to | 9, 22, 29, 125 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.SID | 64 |
| abstract_inverted_index.The | 0, 129 |
| abstract_inverted_index.and | 11, 55, 78, 110 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.for | 74, 98 |
| abstract_inverted_index.our | 61 |
| abstract_inverted_index.the | 20, 46, 113 |
| abstract_inverted_index.Most | 33 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.mean | 118 |
| abstract_inverted_index.thus | 24 |
| abstract_inverted_index.with | 19, 112 |
| abstract_inverted_index.(SID) | 38 |
| abstract_inverted_index.Image | 36 |
| abstract_inverted_index.These | 84 |
| abstract_inverted_index.model | 88, 115 |
| abstract_inverted_index.often | 18, 51 |
| abstract_inverted_index.other | 56 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.this, | 60 |
| abstract_inverted_index.tools | 6 |
| abstract_inverted_index.under | 90 |
| abstract_inverted_index.across | 107 |
| abstract_inverted_index.advent | 1 |
| abstract_inverted_index.anyone | 8 |
| abstract_inverted_index.create | 10 |
| abstract_inverted_index.images | 14, 43, 106 |
| abstract_inverted_index.media, | 17 |
| abstract_inverted_index.models | 101, 126 |
| abstract_inverted_index.online | 30 |
| abstract_inverted_index.posing | 25 |
| abstract_inverted_index.social | 16 |
| abstract_inverted_index.spread | 12 |
| abstract_inverted_index.threat | 28 |
| abstract_inverted_index.+22.53% | 123 |
| abstract_inverted_index.address | 59 |
| abstract_inverted_index.altered | 52 |
| abstract_inverted_index.average | 119 |
| abstract_inverted_index.capable | 102 |
| abstract_inverted_index.enables | 7 |
| abstract_inverted_index.genetic | 72 |
| abstract_inverted_index.improve | 87 |
| abstract_inverted_index.methods | 85 |
| abstract_inverted_index.optimal | 75 |
| abstract_inverted_index.provide | 95 |
| abstract_inverted_index.sourced | 44 |
| abstract_inverted_index.varying | 108 |
| abstract_inverted_index.without | 127 |
| abstract_inverted_index.compared | 124 |
| abstract_inverted_index.enhances | 63 |
| abstract_inverted_index.existing | 34 |
| abstract_inverted_index.findings | 94 |
| abstract_inverted_index.increase | 121 |
| abstract_inverted_index.insights | 97 |
| abstract_inverted_index.mislead, | 23 |
| abstract_inverted_index.research | 62 |
| abstract_inverted_index.struggle | 40 |
| abstract_inverted_index.valuable | 96 |
| abstract_inverted_index.Detection | 37 |
| abstract_inverted_index.Internet, | 47 |
| abstract_inverted_index.Synthetic | 35 |
| abstract_inverted_index.achieving | 116 |
| abstract_inverted_index.algorithm | 73 |
| abstract_inverted_index.approach. | 83 |
| abstract_inverted_index.available | 132 |
| abstract_inverted_index.detection | 100 |
| abstract_inverted_index.exploring | 66 |
| abstract_inverted_index.generated | 42 |
| abstract_inverted_index.intention | 21 |
| abstract_inverted_index.precision | 120 |
| abstract_inverted_index.qualities | 109 |
| abstract_inverted_index.solutions | 39 |
| abstract_inverted_index.synthetic | 13, 105 |
| abstract_inverted_index.Generative | 4 |
| abstract_inverted_index.accessible | 3 |
| abstract_inverted_index.developing | 99 |
| abstract_inverted_index.integrity. | 32 |
| abstract_inverted_index.leveraging | 70 |
| abstract_inverted_index.real-world | 91 |
| abstract_inverted_index.selection, | 77 |
| abstract_inverted_index.compression | 54 |
| abstract_inverted_index.identifying | 104 |
| abstract_inverted_index.information | 31 |
| abstract_inverted_index.introducing | 79 |
| abstract_inverted_index.operations. | 57 |
| abstract_inverted_index.performance | 89 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.augmentation | 68, 76 |
| abstract_inverted_index.optimization | 82 |
| abstract_inverted_index.combinations, | 69 |
| abstract_inverted_index.dual-criteria | 81 |
| abstract_inverted_index.significantly | 86 |
| abstract_inverted_index.augmentations. | 128 |
| abstract_inverted_index.implementation | 130 |
| abstract_inverted_index.perturbations. | 92 |
| abstract_inverted_index.best-performing | 114 |
| abstract_inverted_index.transformations, | 111 |
| abstract_inverted_index.github.com/efthimia145/sid-composite-data-augmentation. | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |