Composite Deep Network with Feature Weighting for Improved Delineation of COVID Infection in Lung CT Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.01.17.23284673
An early effective screening and grading of COVID-19 has become imperative towards optimizing the limited available resources of the medical facilities. An automated segmentation of the infected volumes in lung CT is expected to significantly aid in the diagnosis and care of patients. However, an accurate demarcation of lesions remains problematic due to their irregular structure and location(s) within the lung. A novel deep learning architecture, Composite Deep network with Feature Weighting (CDNetFW) , is proposed for efficient delineation of infected regions from lung CT images. Initially a coarser-segmentation is performed directly at shallower levels, thereby facilitating discovery of robust and discriminatory characteristics in the hidden layers. The novel feature weighting module helps prioritise relevant feature maps to be probed, along with those regions containing crucial information within these maps. This is followed by estimating the severity of the disease. The deep network CDNetFW has been shown to outperform several state-of-the-art architectures in the COVID-19 lesion segmentation task, as measured by experimental results on CT slices from publicly available datasets, especially when it comes to defining structures involving complex geometries.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.01.17.23284673
- https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4317387903
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4317387903Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.01.17.23284673Digital Object Identifier
- Title
-
Composite Deep Network with Feature Weighting for Improved Delineation of COVID Infection in Lung CTWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-18Full publication date if available
- Authors
-
Pallabi Dutta, Sushmita MitraList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.01.17.23284673Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdfDirect OA link when available
- Concepts
-
Weighting, Segmentation, Artificial intelligence, Feature (linguistics), Computer science, Deep learning, Coronavirus disease 2019 (COVID-19), Pattern recognition (psychology), Convolutional neural network, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Radiology, Medicine, Infectious disease (medical specialty), Disease, Pathology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4317387903 |
|---|---|
| doi | https://doi.org/10.1101/2023.01.17.23284673 |
| ids.doi | https://doi.org/10.1101/2023.01.17.23284673 |
| ids.openalex | https://openalex.org/W4317387903 |
| fwci | 0.61810993 |
| type | preprint |
| title | Composite Deep Network with Feature Weighting for Improved Delineation of COVID Infection in Lung CT |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10202 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Lung Cancer Diagnosis and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C183115368 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8450453281402588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[0].display_name | Weighting |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7444276213645935 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6810354590415955 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6407890915870667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6087428331375122 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5852460861206055 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C3008058167 |
| concepts[6].level | 4 |
| concepts[6].score | 0.581924557685852 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[6].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5792293548583984 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C81363708 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42735376954078674 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[8].display_name | Convolutional neural network |
| concepts[9].id | https://openalex.org/C3007834351 |
| concepts[9].level | 5 |
| concepts[9].score | 0.42190489172935486 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[9].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2183125913143158 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18152815103530884 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C524204448 |
| concepts[12].level | 3 |
| concepts[12].score | 0.16278722882270813 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[12].display_name | Infectious disease (medical specialty) |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.12747451663017273 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10716971755027771 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/weighting |
| keywords[0].score | 0.8450453281402588 |
| keywords[0].display_name | Weighting |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7444276213645935 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6810354590415955 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.6407890915870667 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6087428331375122 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5852460861206055 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[6].score | 0.581924557685852 |
| keywords[6].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5792293548583984 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[8].score | 0.42735376954078674 |
| keywords[8].display_name | Convolutional neural network |
| keywords[9].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[9].score | 0.42190489172935486 |
| keywords[9].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.2183125913143158 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.18152815103530884 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/infectious-disease |
| keywords[12].score | 0.16278722882270813 |
| keywords[12].display_name | Infectious disease (medical specialty) |
| keywords[13].id | https://openalex.org/keywords/disease |
| keywords[13].score | 0.12747451663017273 |
| keywords[13].display_name | Disease |
| keywords[14].id | https://openalex.org/keywords/pathology |
| keywords[14].score | 0.10716971755027771 |
| keywords[14].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1101/2023.01.17.23284673 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.01.17.23284673 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006358215 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pallabi Dutta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6498739 |
| authorships[0].affiliations[0].raw_affiliation_string | Machine Intelligence Unit, Indian Statistical Institute, Kolkata 70008, India |
| authorships[0].institutions[0].id | https://openalex.org/I6498739 |
| authorships[0].institutions[0].ror | https://ror.org/00q2w1j53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6498739 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Statistical Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pallabi Dutta |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Machine Intelligence Unit, Indian Statistical Institute, Kolkata 70008, India |
| authorships[1].author.id | https://openalex.org/A5028039397 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9285-1117 |
| authorships[1].author.display_name | Sushmita Mitra |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6498739 |
| authorships[1].affiliations[0].raw_affiliation_string | Machine Intelligence Unit, Indian Statistical Institute, Kolkata 70008, India |
| authorships[1].institutions[0].id | https://openalex.org/I6498739 |
| authorships[1].institutions[0].ror | https://ror.org/00q2w1j53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6498739 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Statistical Institute |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sushmita Mitra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Machine Intelligence Unit, Indian Statistical Institute, Kolkata 70008, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Composite Deep Network with Feature Weighting for Improved Delineation of COVID Infection in Lung CT |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2180954594, https://openalex.org/W2052835778, https://openalex.org/W2049003611, https://openalex.org/W2127804977, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.01.17.23284673 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.01.17.23284673 |
| primary_location.id | doi:10.1101/2023.01.17.23284673 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/02/17/2023.01.17.23284673.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.01.17.23284673 |
| publication_date | 2023-01-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3125348047, https://openalex.org/W2919115771, https://openalex.org/W2194775991, https://openalex.org/W2928165649, https://openalex.org/W2963446712, https://openalex.org/W2963881378, https://openalex.org/W1901129140, https://openalex.org/W6750469568, https://openalex.org/W2884436604, https://openalex.org/W3047502985, https://openalex.org/W3094209195, https://openalex.org/W3121796306, https://openalex.org/W3121891683, https://openalex.org/W3208176997, https://openalex.org/W3011149445, https://openalex.org/W3049757379, https://openalex.org/W3016950572, https://openalex.org/W3026931681, https://openalex.org/W3114083731, https://openalex.org/W3144061366, https://openalex.org/W3164607782, https://openalex.org/W3166378522, https://openalex.org/W3189960127, https://openalex.org/W2108598243, https://openalex.org/W3027763298, https://openalex.org/W3165635828, https://openalex.org/W2962914239, https://openalex.org/W2962767316, https://openalex.org/W2964098128 |
| referenced_works_count | 29 |
| abstract_inverted_index., | 74 |
| abstract_inverted_index.A | 62 |
| abstract_inverted_index.a | 88 |
| abstract_inverted_index.An | 1, 22 |
| abstract_inverted_index.CT | 31, 85, 165 |
| abstract_inverted_index.an | 45 |
| abstract_inverted_index.as | 159 |
| abstract_inverted_index.at | 93 |
| abstract_inverted_index.be | 119 |
| abstract_inverted_index.by | 134, 161 |
| abstract_inverted_index.in | 29, 37, 104, 153 |
| abstract_inverted_index.is | 32, 75, 90, 132 |
| abstract_inverted_index.it | 173 |
| abstract_inverted_index.of | 7, 18, 25, 42, 48, 80, 99, 138 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.to | 34, 53, 118, 148, 175 |
| abstract_inverted_index.The | 108, 141 |
| abstract_inverted_index.aid | 36 |
| abstract_inverted_index.and | 5, 40, 57, 101 |
| abstract_inverted_index.due | 52 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.has | 9, 145 |
| abstract_inverted_index.the | 14, 19, 26, 38, 60, 105, 136, 139, 154 |
| abstract_inverted_index.Deep | 68 |
| abstract_inverted_index.This | 131 |
| abstract_inverted_index.been | 146 |
| abstract_inverted_index.care | 41 |
| abstract_inverted_index.deep | 64, 142 |
| abstract_inverted_index.from | 83, 167 |
| abstract_inverted_index.lung | 30, 84 |
| abstract_inverted_index.maps | 117 |
| abstract_inverted_index.when | 172 |
| abstract_inverted_index.with | 70, 122 |
| abstract_inverted_index.along | 121 |
| abstract_inverted_index.comes | 174 |
| abstract_inverted_index.early | 2 |
| abstract_inverted_index.helps | 113 |
| abstract_inverted_index.lung. | 61 |
| abstract_inverted_index.maps. | 130 |
| abstract_inverted_index.novel | 63, 109 |
| abstract_inverted_index.shown | 147 |
| abstract_inverted_index.task, | 158 |
| abstract_inverted_index.their | 54 |
| abstract_inverted_index.these | 129 |
| abstract_inverted_index.those | 123 |
| abstract_inverted_index.become | 10 |
| abstract_inverted_index.hidden | 106 |
| abstract_inverted_index.lesion | 156 |
| abstract_inverted_index.module | 112 |
| abstract_inverted_index.robust | 100 |
| abstract_inverted_index.slices | 166 |
| abstract_inverted_index.within | 59, 128 |
| abstract_inverted_index.CDNetFW | 144 |
| abstract_inverted_index.Feature | 71 |
| abstract_inverted_index.complex | 179 |
| abstract_inverted_index.crucial | 126 |
| abstract_inverted_index.feature | 110, 116 |
| abstract_inverted_index.grading | 6 |
| abstract_inverted_index.images. | 86 |
| abstract_inverted_index.layers. | 107 |
| abstract_inverted_index.lesions | 49 |
| abstract_inverted_index.levels, | 95 |
| abstract_inverted_index.limited | 15 |
| abstract_inverted_index.medical | 20 |
| abstract_inverted_index.network | 69, 143 |
| abstract_inverted_index.probed, | 120 |
| abstract_inverted_index.regions | 82, 124 |
| abstract_inverted_index.remains | 50 |
| abstract_inverted_index.results | 163 |
| abstract_inverted_index.several | 150 |
| abstract_inverted_index.thereby | 96 |
| abstract_inverted_index.towards | 12 |
| abstract_inverted_index.volumes | 28 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 8, 155 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.accurate | 46 |
| abstract_inverted_index.defining | 176 |
| abstract_inverted_index.directly | 92 |
| abstract_inverted_index.disease. | 140 |
| abstract_inverted_index.expected | 33 |
| abstract_inverted_index.followed | 133 |
| abstract_inverted_index.infected | 27, 81 |
| abstract_inverted_index.learning | 65 |
| abstract_inverted_index.measured | 160 |
| abstract_inverted_index.proposed | 76 |
| abstract_inverted_index.publicly | 168 |
| abstract_inverted_index.relevant | 115 |
| abstract_inverted_index.severity | 137 |
| abstract_inverted_index.(CDNetFW) | 73 |
| abstract_inverted_index.Composite | 67 |
| abstract_inverted_index.Initially | 87 |
| abstract_inverted_index.Weighting | 72 |
| abstract_inverted_index.automated | 23 |
| abstract_inverted_index.available | 16, 169 |
| abstract_inverted_index.datasets, | 170 |
| abstract_inverted_index.diagnosis | 39 |
| abstract_inverted_index.discovery | 98 |
| abstract_inverted_index.effective | 3 |
| abstract_inverted_index.efficient | 78 |
| abstract_inverted_index.involving | 178 |
| abstract_inverted_index.irregular | 55 |
| abstract_inverted_index.patients. | 43 |
| abstract_inverted_index.performed | 91 |
| abstract_inverted_index.resources | 17 |
| abstract_inverted_index.screening | 4 |
| abstract_inverted_index.shallower | 94 |
| abstract_inverted_index.structure | 56 |
| abstract_inverted_index.weighting | 111 |
| abstract_inverted_index.containing | 125 |
| abstract_inverted_index.especially | 171 |
| abstract_inverted_index.estimating | 135 |
| abstract_inverted_index.imperative | 11 |
| abstract_inverted_index.optimizing | 13 |
| abstract_inverted_index.outperform | 149 |
| abstract_inverted_index.prioritise | 114 |
| abstract_inverted_index.structures | 177 |
| abstract_inverted_index.delineation | 79 |
| abstract_inverted_index.demarcation | 47 |
| abstract_inverted_index.facilities. | 21 |
| abstract_inverted_index.geometries. | 180 |
| abstract_inverted_index.information | 127 |
| abstract_inverted_index.location(s) | 58 |
| abstract_inverted_index.problematic | 51 |
| abstract_inverted_index.experimental | 162 |
| abstract_inverted_index.facilitating | 97 |
| abstract_inverted_index.segmentation | 24, 157 |
| abstract_inverted_index.architecture, | 66 |
| abstract_inverted_index.architectures | 152 |
| abstract_inverted_index.significantly | 35 |
| abstract_inverted_index.discriminatory | 102 |
| abstract_inverted_index.characteristics | 103 |
| abstract_inverted_index.state-of-the-art | 151 |
| abstract_inverted_index.coarser-segmentation | 89 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5006358215 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I6498739 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.65222233 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |