Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23020890
Recently, with the massive growth of IoT devices, the attack surfaces have also intensified. Thus, cybersecurity has become a critical component to protect organizational boundaries. In networks, Intrusion Detection Systems (IDSs) are employed to raise critical flags during network management. One aspect is malicious traffic identification, where zero-day attack detection is a critical problem of study. Current approaches are aligned towards deep learning (DL) methods for IDSs, but the success of the DL mechanism depends on the feature learning process, which is an open challenge. Thus, in this paper, the authors propose a technique which combines both CNN, and GRU, where different CNN–GRU combination sequences are presented to optimize the network parameters. In the simulation, the authors used the CICIDS-2017 benchmark dataset and used metrics such as precision, recall, False Positive Rate (FPR), True Positive Rate (TRP), and other aligned metrics. The results suggest a significant improvement, where many network attacks are detected with an accuracy of 98.73%, and an FPR rate of 0.075. We also performed a comparative analysis with other existing techniques, and the obtained results indicate the efficacy of the proposed IDS scheme in real cybersecurity setups.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23020890
- https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238
- OA Status
- gold
- Cited By
- 96
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4315781229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4315781229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23020890Digital Object Identifier
- Title
-
Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection SystemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-12Full publication date if available
- Authors
-
Azriel Henry, Sunil Gautam, Samrat Khanna, Khaled M. Rabie, Thokozani Shongwe, Pronaya Bhattacharya, Bhisham Sharma, S. ChowdhuryList of authors in order
- Landing page
-
https://doi.org/10.3390/s23020890Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238Direct OA link when available
- Concepts
-
Intrusion detection system, Benchmark (surveying), Computer science, False positive rate, Deep learning, Artificial intelligence, Data mining, Feature (linguistics), Process (computing), Scheme (mathematics), Machine learning, Identification (biology), Constant false alarm rate, Pattern recognition (psychology), Botany, Philosophy, Mathematical analysis, Linguistics, Geodesy, Geography, Mathematics, Operating system, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
96Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 37, 2024: 37, 2023: 21, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4315781229 |
|---|---|
| doi | https://doi.org/10.3390/s23020890 |
| ids.doi | https://doi.org/10.3390/s23020890 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36679684 |
| ids.openalex | https://openalex.org/W4315781229 |
| fwci | 41.75746773 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D019985 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Benchmarking |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016494 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Computer Security |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D003198 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Computer Simulation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D019985 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Benchmarking |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016494 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Computer Security |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003198 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Computer Simulation |
| type | article |
| title | Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System |
| biblio.issue | 2 |
| biblio.volume | 23 |
| biblio.last_page | 890 |
| biblio.first_page | 890 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C35525427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7778024673461914 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[0].display_name | Intrusion detection system |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7373526692390442 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7255409359931946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C95922358 |
| concepts[3].level | 2 |
| concepts[3].score | 0.681442379951477 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5432725 |
| concepts[3].display_name | False positive rate |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5947898626327515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5841715335845947 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5039383769035339 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5006604194641113 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4965677857398987 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C77618280 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4804948568344116 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[9].display_name | Scheme (mathematics) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4602550268173218 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C116834253 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43816930055618286 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[11].display_name | Identification (biology) |
| concepts[12].id | https://openalex.org/C77052588 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42180463671684265 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q644307 |
| concepts[12].display_name | Constant false alarm rate |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3392980694770813 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C59822182 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[14].display_name | Botany |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[0].score | 0.7778024673461914 |
| keywords[0].display_name | Intrusion detection system |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7373526692390442 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7255409359931946 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/false-positive-rate |
| keywords[3].score | 0.681442379951477 |
| keywords[3].display_name | False positive rate |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5947898626327515 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5841715335845947 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.5039383769035339 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5006604194641113 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4965677857398987 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/scheme |
| keywords[9].score | 0.4804948568344116 |
| keywords[9].display_name | Scheme (mathematics) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4602550268173218 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/identification |
| keywords[11].score | 0.43816930055618286 |
| keywords[11].display_name | Identification (biology) |
| keywords[12].id | https://openalex.org/keywords/constant-false-alarm-rate |
| keywords[12].score | 0.42180463671684265 |
| keywords[12].display_name | Constant false alarm rate |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3392980694770813 |
| keywords[13].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.3390/s23020890 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23020890 |
| locations[1].id | pmid:36679684 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36679684 |
| locations[2].id | pmh:oai:doaj.org/article:75bc285afa824e82ad957d0a55dd0b64 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 23, Iss 2, p 890 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/75bc285afa824e82ad957d0a55dd0b64 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/23/2/890/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 23; Issue 2; Pages: 890 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s23020890 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9866711 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9866711 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5022584743 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Azriel Henry |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210091027 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India |
| authorships[0].institutions[0].id | https://openalex.org/I4210091027 |
| authorships[0].institutions[0].ror | https://ror.org/00c5q9r49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210091027 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Advanced Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Azriel Henry |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India |
| authorships[1].author.id | https://openalex.org/A5074382473 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sunil Gautam |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165831266 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India |
| authorships[1].institutions[0].id | https://openalex.org/I165831266 |
| authorships[1].institutions[0].ror | https://ror.org/05qkq7x38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165831266 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Nirma University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sunil Gautam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India |
| authorships[2].author.id | https://openalex.org/A5070404526 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Samrat Khanna |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210091027 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India |
| authorships[2].institutions[0].id | https://openalex.org/I4210091027 |
| authorships[2].institutions[0].ror | https://ror.org/00c5q9r49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210091027 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Advanced Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Samrat Khanna |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India |
| authorships[3].author.id | https://openalex.org/A5030692615 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9784-3703 |
| authorships[3].author.display_name | Khaled M. Rabie |
| authorships[3].countries | GB, ZA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24027795 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I11983389 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK |
| authorships[3].institutions[0].id | https://openalex.org/I11983389 |
| authorships[3].institutions[0].ror | https://ror.org/02hstj355 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I11983389 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Manchester Metropolitan University |
| authorships[3].institutions[1].id | https://openalex.org/I24027795 |
| authorships[3].institutions[1].ror | https://ror.org/04z6c2n17 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I24027795 |
| authorships[3].institutions[1].country_code | ZA |
| authorships[3].institutions[1].display_name | University of Johannesburg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Khaled Rabie |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa, Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK |
| authorships[4].author.id | https://openalex.org/A5069878254 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3011-7600 |
| authorships[4].author.display_name | Thokozani Shongwe |
| authorships[4].countries | ZA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24027795 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa |
| authorships[4].institutions[0].id | https://openalex.org/I24027795 |
| authorships[4].institutions[0].ror | https://ror.org/04z6c2n17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24027795 |
| authorships[4].institutions[0].country_code | ZA |
| authorships[4].institutions[0].display_name | University of Johannesburg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Thokozani Shongwe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa |
| authorships[5].author.id | https://openalex.org/A5053527968 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1206-2298 |
| authorships[5].author.display_name | Pronaya Bhattacharya |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University, Kolkata, 700135, West Bengal, India |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pronaya Bhattacharya |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University, Kolkata, 700135, West Bengal, India |
| authorships[6].author.id | https://openalex.org/A5057555412 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Bhisham Sharma |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[6].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[6].institutions[0].id | https://openalex.org/I74319210 |
| authorships[6].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Chitkara University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bhisham Sharma |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[7].author.id | https://openalex.org/A5103195010 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5679-3140 |
| authorships[7].author.display_name | S. Chowdhury |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170558118, https://openalex.org/I4391012606 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Masters of Computer Application, Sri Venkateswara College of Engineering and Technology (A), Chittoor 517127, Andhra Pradesh, India |
| authorships[7].institutions[0].id | https://openalex.org/I4391012606 |
| authorships[7].institutions[0].ror | https://ror.org/0281pgk04 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4391012606 |
| authorships[7].institutions[0].country_code | |
| authorships[7].institutions[0].display_name | AAA College of Engineering and Technology |
| authorships[7].institutions[1].id | https://openalex.org/I170558118 |
| authorships[7].institutions[1].ror | https://ror.org/05weahn72 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I170558118 |
| authorships[7].institutions[1].country_code | IN |
| authorships[7].institutions[1].display_name | Sri Venkateswara University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Subrata Chowdhury |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Masters of Computer Application, Sri Venkateswara College of Engineering and Technology (A), Chittoor 517127, Andhra Pradesh, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2393267898, https://openalex.org/W2369874171, https://openalex.org/W2013909972, https://openalex.org/W2383301100, https://openalex.org/W2392864074, https://openalex.org/W2352639800, https://openalex.org/W2280598164, https://openalex.org/W4388425184, https://openalex.org/W3112374511, https://openalex.org/W2189092700 |
| cited_by_count | 96 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 37 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 21 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23020890 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23020890 |
| primary_location.id | doi:10.3390/s23020890 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/2/890/pdf?version=1673515238 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23020890 |
| publication_date | 2023-01-12 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2990352665, https://openalex.org/W3007394313, https://openalex.org/W2958285686, https://openalex.org/W2782735691, https://openalex.org/W6680048697, https://openalex.org/W2926701059, https://openalex.org/W2756489700, https://openalex.org/W3010957669, https://openalex.org/W2924689635, https://openalex.org/W3009253820, https://openalex.org/W3028728764, https://openalex.org/W3092565864, https://openalex.org/W3158456479, https://openalex.org/W4206130810, https://openalex.org/W3209272920, https://openalex.org/W3192184909, https://openalex.org/W3017093935, https://openalex.org/W3119207006, https://openalex.org/W4200343903, https://openalex.org/W3082065751, https://openalex.org/W3087100893, https://openalex.org/W3205483739, https://openalex.org/W2986013500, https://openalex.org/W3116459366, https://openalex.org/W3048313003, https://openalex.org/W2944572808, https://openalex.org/W2781561856, https://openalex.org/W2970413753, https://openalex.org/W2889165715, https://openalex.org/W3035558131, https://openalex.org/W2941426123, https://openalex.org/W2990316710, https://openalex.org/W2789584652, https://openalex.org/W2021586492, https://openalex.org/W6779081269, https://openalex.org/W3126814579, https://openalex.org/W3011647371, https://openalex.org/W4293081526, https://openalex.org/W2818789173, https://openalex.org/W4206364378, https://openalex.org/W2996778774, https://openalex.org/W2990237400, https://openalex.org/W2133590498, https://openalex.org/W3034273612, https://openalex.org/W3113154577, https://openalex.org/W3101894954 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 18, 51, 92, 144, 167 |
| abstract_inverted_index.DL | 72 |
| abstract_inverted_index.In | 25, 112 |
| abstract_inverted_index.We | 164 |
| abstract_inverted_index.an | 82, 154, 159 |
| abstract_inverted_index.as | 126 |
| abstract_inverted_index.in | 86, 186 |
| abstract_inverted_index.is | 42, 50, 81 |
| abstract_inverted_index.of | 5, 54, 70, 156, 162, 181 |
| abstract_inverted_index.on | 75 |
| abstract_inverted_index.to | 21, 33, 107 |
| abstract_inverted_index.FPR | 160 |
| abstract_inverted_index.IDS | 184 |
| abstract_inverted_index.IoT | 6 |
| abstract_inverted_index.One | 40 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 98, 122, 137, 158, 174 |
| abstract_inverted_index.are | 31, 58, 105, 151 |
| abstract_inverted_index.but | 67 |
| abstract_inverted_index.for | 65 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.the | 2, 8, 68, 71, 76, 89, 109, 113, 115, 118, 175, 179, 182 |
| abstract_inverted_index.(DL) | 63 |
| abstract_inverted_index.CNN, | 97 |
| abstract_inverted_index.GRU, | 99 |
| abstract_inverted_index.Rate | 131, 135 |
| abstract_inverted_index.True | 133 |
| abstract_inverted_index.also | 12, 165 |
| abstract_inverted_index.both | 96 |
| abstract_inverted_index.deep | 61 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.many | 148 |
| abstract_inverted_index.open | 83 |
| abstract_inverted_index.rate | 161 |
| abstract_inverted_index.real | 187 |
| abstract_inverted_index.such | 125 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.used | 117, 123 |
| abstract_inverted_index.with | 1, 153, 170 |
| abstract_inverted_index.False | 129 |
| abstract_inverted_index.IDSs, | 66 |
| abstract_inverted_index.Thus, | 14, 85 |
| abstract_inverted_index.flags | 36 |
| abstract_inverted_index.other | 138, 171 |
| abstract_inverted_index.raise | 34 |
| abstract_inverted_index.where | 46, 100, 147 |
| abstract_inverted_index.which | 80, 94 |
| abstract_inverted_index.(FPR), | 132 |
| abstract_inverted_index.(IDSs) | 30 |
| abstract_inverted_index.(TRP), | 136 |
| abstract_inverted_index.0.075. | 163 |
| abstract_inverted_index.aspect | 41 |
| abstract_inverted_index.attack | 9, 48 |
| abstract_inverted_index.become | 17 |
| abstract_inverted_index.during | 37 |
| abstract_inverted_index.growth | 4 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.scheme | 185 |
| abstract_inverted_index.study. | 55 |
| abstract_inverted_index.98.73%, | 157 |
| abstract_inverted_index.Current | 56 |
| abstract_inverted_index.Systems | 29 |
| abstract_inverted_index.aligned | 59, 139 |
| abstract_inverted_index.attacks | 150 |
| abstract_inverted_index.authors | 90, 116 |
| abstract_inverted_index.dataset | 121 |
| abstract_inverted_index.depends | 74 |
| abstract_inverted_index.feature | 77 |
| abstract_inverted_index.massive | 3 |
| abstract_inverted_index.methods | 64 |
| abstract_inverted_index.metrics | 124 |
| abstract_inverted_index.network | 38, 110, 149 |
| abstract_inverted_index.problem | 53 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.protect | 22 |
| abstract_inverted_index.recall, | 128 |
| abstract_inverted_index.results | 142, 177 |
| abstract_inverted_index.setups. | 189 |
| abstract_inverted_index.success | 69 |
| abstract_inverted_index.suggest | 143 |
| abstract_inverted_index.towards | 60 |
| abstract_inverted_index.traffic | 44 |
| abstract_inverted_index.Positive | 130, 134 |
| abstract_inverted_index.accuracy | 155 |
| abstract_inverted_index.analysis | 169 |
| abstract_inverted_index.combines | 95 |
| abstract_inverted_index.critical | 19, 35, 52 |
| abstract_inverted_index.detected | 152 |
| abstract_inverted_index.devices, | 7 |
| abstract_inverted_index.efficacy | 180 |
| abstract_inverted_index.employed | 32 |
| abstract_inverted_index.existing | 172 |
| abstract_inverted_index.indicate | 178 |
| abstract_inverted_index.learning | 62, 78 |
| abstract_inverted_index.metrics. | 140 |
| abstract_inverted_index.obtained | 176 |
| abstract_inverted_index.optimize | 108 |
| abstract_inverted_index.process, | 79 |
| abstract_inverted_index.proposed | 183 |
| abstract_inverted_index.surfaces | 10 |
| abstract_inverted_index.zero-day | 47 |
| abstract_inverted_index.CNN–GRU | 102 |
| abstract_inverted_index.Detection | 28 |
| abstract_inverted_index.Intrusion | 27 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.benchmark | 120 |
| abstract_inverted_index.component | 20 |
| abstract_inverted_index.detection | 49 |
| abstract_inverted_index.different | 101 |
| abstract_inverted_index.malicious | 43 |
| abstract_inverted_index.mechanism | 73 |
| abstract_inverted_index.networks, | 26 |
| abstract_inverted_index.performed | 166 |
| abstract_inverted_index.presented | 106 |
| abstract_inverted_index.sequences | 104 |
| abstract_inverted_index.technique | 93 |
| abstract_inverted_index.approaches | 57 |
| abstract_inverted_index.challenge. | 84 |
| abstract_inverted_index.precision, | 127 |
| abstract_inverted_index.CICIDS-2017 | 119 |
| abstract_inverted_index.boundaries. | 24 |
| abstract_inverted_index.combination | 103 |
| abstract_inverted_index.comparative | 168 |
| abstract_inverted_index.management. | 39 |
| abstract_inverted_index.parameters. | 111 |
| abstract_inverted_index.significant | 145 |
| abstract_inverted_index.simulation, | 114 |
| abstract_inverted_index.techniques, | 173 |
| abstract_inverted_index.improvement, | 146 |
| abstract_inverted_index.intensified. | 13 |
| abstract_inverted_index.cybersecurity | 15, 188 |
| abstract_inverted_index.organizational | 23 |
| abstract_inverted_index.identification, | 45 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5053527968, https://openalex.org/A5030692615 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I11983389, https://openalex.org/I24027795 |
| citation_normalized_percentile.value | 0.99741301 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |