COMPREHENSIVE DATA ANALYTICS STUDY OF THE AIRLINE INDUSTRY FROM 2012–2020 USING TABLE AU Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.33564/ijeast.2025.v10i01.012
The airline industry is increasingly leveraging data-driven techniques to improve customer satisfaction, operational efficiency, and sustainability. Several studies focus on utilizing text mining, sentiment analysis, and machine learning to analyze customer feedback from social media platforms, such as Twitter, to better understand passenger experiences. Hybrid models combining lexicon-based methods with deep learning have been proposed to enhance sentiment accuracy, while methodologies for analyzing flight delays, cancellations, and safety reports have been introduced to identify operational inefficiencies. Furthermore, sustainability practices in the airline industry are explored through machine learning clustering and bibliometric analysis, providing valuable insights for airlines to improve their environmental performance. This study also highlights the importance of integrating structured flight operation data with customer sentiment data for more comprehensive insights. Additionally, the use of Tableau facilitates realtime visual storytelling, allowing stakeholders to make faster and more informed decisions. Overall, the integration of advanced data analysis methods offers significant potential to enhance airline operations and customer service while addressing sustainability challenges.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.33564/ijeast.2025.v10i01.012
- https://doi.org/10.33564/ijeast.2025.v10i01.012
- OA Status
- diamond
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412361808
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412361808Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.33564/ijeast.2025.v10i01.012Digital Object Identifier
- Title
-
COMPREHENSIVE DATA ANALYTICS STUDY OF THE AIRLINE INDUSTRY FROM 2012–2020 USING TABLE AUWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
K. Nihanth, Stephen B. Harsh, Ajmeera Kiran, D O MosesList of authors in order
- Landing page
-
https://doi.org/10.33564/ijeast.2025.v10i01.012Publisher landing page
- PDF URL
-
https://doi.org/10.33564/ijeast.2025.v10i01.012Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.33564/ijeast.2025.v10i01.012Direct OA link when available
- Concepts
-
Table (database), Analytics, Data science, Data analysis, Computer science, Business, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412361808 |
|---|---|
| doi | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| ids.doi | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| ids.openalex | https://openalex.org/W4412361808 |
| fwci | 0.0 |
| type | article |
| title | COMPREHENSIVE DATA ANALYTICS STUDY OF THE AIRLINE INDUSTRY FROM 2012–2020 USING TABLE AU |
| biblio.issue | 01 |
| biblio.volume | 10 |
| biblio.last_page | 90 |
| biblio.first_page | 82 |
| topics[0].id | https://openalex.org/T11918 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9071999788284302 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45235069 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7000499963760376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278425 |
| concepts[0].display_name | Table (database) |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6757125854492188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48984500765800476 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C175801342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44442489743232727 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[3].display_name | Data analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.38677680492401123 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C144133560 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3729901909828186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[5].display_name | Business |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.24321141839027405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/table |
| keywords[0].score | 0.7000499963760376 |
| keywords[0].display_name | Table (database) |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.6757125854492188 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.48984500765800476 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/data-analysis |
| keywords[3].score | 0.44442489743232727 |
| keywords[3].display_name | Data analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.38677680492401123 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/business |
| keywords[5].score | 0.3729901909828186 |
| keywords[5].display_name | Business |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.24321141839027405 |
| keywords[6].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.33564/ijeast.2025.v10i01.012 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210216920 |
| locations[0].source.issn | 2455-2143 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2455-2143 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Engineering Applied Sciences and Technology |
| locations[0].source.host_organization | https://openalex.org/P4360969357 |
| locations[0].source.host_organization_name | IJEAST |
| locations[0].source.host_organization_lineage | https://openalex.org/P4360969357 |
| locations[0].source.host_organization_lineage_names | IJEAST |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Engineering Applied Sciences and Technology |
| locations[0].landing_page_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5118962172 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | K. Nihanth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | K. Nihanth |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030650106 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Stephen B. Harsh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. Harsh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087336365 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3826-4346 |
| authorships[2].author.display_name | Ajmeera Kiran |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A.Sai Kiran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109498828 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | D O Moses |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dr. Diana Moses |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-07-12T00:00:00 |
| display_name | COMPREHENSIVE DATA ANALYTICS STUDY OF THE AIRLINE INDUSTRY FROM 2012–2020 USING TABLE AU |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11918 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9071999788284302 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Forecasting Techniques and Applications |
| related_works | https://openalex.org/W4226266853, https://openalex.org/W4210252074, https://openalex.org/W3092201768, https://openalex.org/W2796632413, https://openalex.org/W2740083192, https://openalex.org/W2508885301, https://openalex.org/W2794907032, https://openalex.org/W4255802207, https://openalex.org/W4298181270, https://openalex.org/W4385267788 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.33564/ijeast.2025.v10i01.012 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210216920 |
| best_oa_location.source.issn | 2455-2143 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2455-2143 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Engineering Applied Sciences and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4360969357 |
| best_oa_location.source.host_organization_name | IJEAST |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4360969357 |
| best_oa_location.source.host_organization_lineage_names | IJEAST |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Engineering Applied Sciences and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| primary_location.id | doi:10.33564/ijeast.2025.v10i01.012 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210216920 |
| primary_location.source.issn | 2455-2143 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2455-2143 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Engineering Applied Sciences and Technology |
| primary_location.source.host_organization | https://openalex.org/P4360969357 |
| primary_location.source.host_organization_name | IJEAST |
| primary_location.source.host_organization_lineage | https://openalex.org/P4360969357 |
| primary_location.source.host_organization_lineage_names | IJEAST |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Engineering Applied Sciences and Technology |
| primary_location.landing_page_url | https://doi.org/10.33564/ijeast.2025.v10i01.012 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4293330951, https://openalex.org/W4292428590, https://openalex.org/W2956699707, https://openalex.org/W3204582429, https://openalex.org/W4311344045, https://openalex.org/W3088719258, https://openalex.org/W3111077109, https://openalex.org/W4387940100, https://openalex.org/W4396731645, https://openalex.org/W3164180342, https://openalex.org/W2939399411, https://openalex.org/W3133280145 |
| referenced_works_count | 12 |
| abstract_inverted_index.as | 37 |
| abstract_inverted_index.in | 79 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 108, 125, 143 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 8, 28, 39, 55, 72, 97, 133, 151 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 14, 25, 66, 89, 136, 155 |
| abstract_inverted_index.are | 83 |
| abstract_inverted_index.for | 61, 95, 118 |
| abstract_inverted_index.the | 80, 106, 123, 141 |
| abstract_inverted_index.use | 124 |
| abstract_inverted_index.This | 102 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.been | 53, 70 |
| abstract_inverted_index.data | 113, 117, 145 |
| abstract_inverted_index.deep | 50 |
| abstract_inverted_index.from | 32 |
| abstract_inverted_index.have | 52, 69 |
| abstract_inverted_index.make | 134 |
| abstract_inverted_index.more | 119, 137 |
| abstract_inverted_index.such | 36 |
| abstract_inverted_index.text | 21 |
| abstract_inverted_index.with | 49, 114 |
| abstract_inverted_index.focus | 18 |
| abstract_inverted_index.media | 34 |
| abstract_inverted_index.study | 103 |
| abstract_inverted_index.their | 99 |
| abstract_inverted_index.while | 59, 158 |
| abstract_inverted_index.Hybrid | 44 |
| abstract_inverted_index.better | 40 |
| abstract_inverted_index.faster | 135 |
| abstract_inverted_index.flight | 63, 111 |
| abstract_inverted_index.models | 45 |
| abstract_inverted_index.offers | 148 |
| abstract_inverted_index.safety | 67 |
| abstract_inverted_index.social | 33 |
| abstract_inverted_index.visual | 129 |
| abstract_inverted_index.Several | 16 |
| abstract_inverted_index.Tableau | 126 |
| abstract_inverted_index.airline | 1, 81, 153 |
| abstract_inverted_index.analyze | 29 |
| abstract_inverted_index.delays, | 64 |
| abstract_inverted_index.enhance | 56, 152 |
| abstract_inverted_index.improve | 9, 98 |
| abstract_inverted_index.machine | 26, 86 |
| abstract_inverted_index.methods | 48, 147 |
| abstract_inverted_index.mining, | 22 |
| abstract_inverted_index.reports | 68 |
| abstract_inverted_index.service | 157 |
| abstract_inverted_index.studies | 17 |
| abstract_inverted_index.through | 85 |
| abstract_inverted_index.Overall, | 140 |
| abstract_inverted_index.Twitter, | 38 |
| abstract_inverted_index.advanced | 144 |
| abstract_inverted_index.airlines | 96 |
| abstract_inverted_index.allowing | 131 |
| abstract_inverted_index.analysis | 146 |
| abstract_inverted_index.customer | 10, 30, 115, 156 |
| abstract_inverted_index.explored | 84 |
| abstract_inverted_index.feedback | 31 |
| abstract_inverted_index.identify | 73 |
| abstract_inverted_index.industry | 2, 82 |
| abstract_inverted_index.informed | 138 |
| abstract_inverted_index.insights | 94 |
| abstract_inverted_index.learning | 27, 51, 87 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.realtime | 128 |
| abstract_inverted_index.valuable | 93 |
| abstract_inverted_index.accuracy, | 58 |
| abstract_inverted_index.analysis, | 24, 91 |
| abstract_inverted_index.analyzing | 62 |
| abstract_inverted_index.combining | 46 |
| abstract_inverted_index.insights. | 121 |
| abstract_inverted_index.operation | 112 |
| abstract_inverted_index.passenger | 42 |
| abstract_inverted_index.potential | 150 |
| abstract_inverted_index.practices | 78 |
| abstract_inverted_index.providing | 92 |
| abstract_inverted_index.sentiment | 23, 57, 116 |
| abstract_inverted_index.utilizing | 20 |
| abstract_inverted_index.addressing | 159 |
| abstract_inverted_index.clustering | 88 |
| abstract_inverted_index.decisions. | 139 |
| abstract_inverted_index.highlights | 105 |
| abstract_inverted_index.importance | 107 |
| abstract_inverted_index.introduced | 71 |
| abstract_inverted_index.leveraging | 5 |
| abstract_inverted_index.operations | 154 |
| abstract_inverted_index.platforms, | 35 |
| abstract_inverted_index.structured | 110 |
| abstract_inverted_index.techniques | 7 |
| abstract_inverted_index.understand | 41 |
| abstract_inverted_index.challenges. | 161 |
| abstract_inverted_index.data-driven | 6 |
| abstract_inverted_index.efficiency, | 13 |
| abstract_inverted_index.facilitates | 127 |
| abstract_inverted_index.integrating | 109 |
| abstract_inverted_index.integration | 142 |
| abstract_inverted_index.operational | 12, 74 |
| abstract_inverted_index.significant | 149 |
| abstract_inverted_index.Furthermore, | 76 |
| abstract_inverted_index.bibliometric | 90 |
| abstract_inverted_index.experiences. | 43 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.performance. | 101 |
| abstract_inverted_index.stakeholders | 132 |
| abstract_inverted_index.Additionally, | 122 |
| abstract_inverted_index.comprehensive | 120 |
| abstract_inverted_index.environmental | 100 |
| abstract_inverted_index.lexicon-based | 47 |
| abstract_inverted_index.methodologies | 60 |
| abstract_inverted_index.satisfaction, | 11 |
| abstract_inverted_index.storytelling, | 130 |
| abstract_inverted_index.cancellations, | 65 |
| abstract_inverted_index.sustainability | 77, 160 |
| abstract_inverted_index.inefficiencies. | 75 |
| abstract_inverted_index.sustainability. | 15 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.33623931 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |