Comprehensive performance analysis of training functions in flow prediction model using artificial neural network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17159/wsa/2024.v50.i2.4099
Higher Himalayan catchments are often poorly monitored for hydrological activities involving flood flow prediction for the safety of riverside communities and the successful operation of hydropower projects. This study aimed to estimate the comparative performance of artificial neural network (ANN) based flow prediction models using 10 years of daily river flow data of Kaligandaki catchment at Kotagaun, Nepal, which is a snow-fed catchment in the Himalayan region. The flow prediction models were trained and tested at a hydrological station using the previous 3 days’ river flow data to predict the 1-day ahead flow data. Eight different training functions were employed in an ANN model for comprehensive statistical assessment of accuracy and precision of each training function. The most significant and validated result obtained in this study is the comprehensive comparison of various training functions’ performance, and identification of the most efficient training function for the study case. Among the training functions investigated, the Levenberg-Marquardt backpropagation function exhibits the best performance for the model having Nash-Sutcliffe efficiency, root mean square error and mean absolute error values of 0.866, 209.578 and 75.422, respectively. This study provides a fundamental basis for accurate flow prediction of topographically challenged catchments where hydrological monitoring and data collection may be limited. In particular, this model will help to improve early warning system, hydrological planning, and the safety of riverside communities in the Himalayan region.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17159/wsa/2024.v50.i2.4099
- https://watersa.net/article/download/18543/21342
- OA Status
- diamond
- Cited By
- 2
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396519442
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396519442Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17159/wsa/2024.v50.i2.4099Digital Object Identifier
- Title
-
Comprehensive performance analysis of training functions in flow prediction model using artificial neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-30Full publication date if available
- Authors
-
K C Shikhar, Khem Prasad Bhattarai, Tang De Shan, Saurabh Mishra, Ishwar Joshi, Anurag Kumar SinghList of authors in order
- Landing page
-
https://doi.org/10.17159/wsa/2024.v50.i2.4099Publisher landing page
- PDF URL
-
https://watersa.net/article/download/18543/21342Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://watersa.net/article/download/18543/21342Direct OA link when available
- Concepts
-
Artificial neural network, Computer science, Training (meteorology), Artificial intelligence, Machine learning, Physics, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396519442 |
|---|---|
| doi | https://doi.org/10.17159/wsa/2024.v50.i2.4099 |
| ids.doi | https://doi.org/10.17159/wsa/2024.v50.i2.4099 |
| ids.openalex | https://openalex.org/W4396519442 |
| fwci | 1.2775571 |
| type | article |
| title | Comprehensive performance analysis of training functions in flow prediction model using artificial neural network |
| biblio.issue | 2 April |
| biblio.volume | 50 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7620999813079834 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T14470 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.6527000069618225 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Data Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7562512159347534 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.599986732006073 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777211547 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5824411511421204 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[2].display_name | Training (meteorology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5032989382743835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3958079218864441 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7562512159347534 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.599986732006073 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/training |
| keywords[2].score | 0.5824411511421204 |
| keywords[2].display_name | Training (meteorology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5032989382743835 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3958079218864441 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.17159/wsa/2024.v50.i2.4099 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181252140 |
| locations[0].source.issn | 0378-4738, 1816-7950 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0378-4738 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Water SA |
| locations[0].source.host_organization | https://openalex.org/P4310315334 |
| locations[0].source.host_organization_name | Water Research Commission |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315334 |
| locations[0].source.host_organization_lineage_names | Water Research Commission |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://watersa.net/article/download/18543/21342 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Water SA |
| locations[0].landing_page_url | https://doi.org/10.17159/wsa/2024.v50.i2.4099 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5095950858 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | K C Shikhar |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower, Hohai University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I163340411 |
| authorships[0].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hohai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None KC Shikhar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Water Resources and Hydropower, Hohai University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5113193956 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Khem Prasad Bhattarai |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Integrated Hydro-Environment Research, Kathmandu, Nepal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Khem Prasad Bhattarai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Integrated Hydro-Environment Research, Kathmandu, Nepal |
| authorships[2].author.id | https://openalex.org/A5108925022 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tang De Shan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower, Hohai University, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I163340411 |
| authorships[2].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hohai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Tang De Shan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Water Resources and Hydropower, Hohai University, Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5056470743 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1986-1228 |
| authorships[3].author.display_name | Saurabh Mishra |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Water Science and Technology, Hohai University, Nanjing, China |
| authorships[3].institutions[0].id | https://openalex.org/I163340411 |
| authorships[3].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hohai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Saurabh Mishra |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Water Science and Technology, Hohai University, Nanjing, China |
| authorships[4].author.id | https://openalex.org/A5095950859 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ishwar Joshi |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for Integrated Hydro-Environment Research, Kathmandu, Nepal |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None Ishwar Joshi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for Integrated Hydro-Environment Research, Kathmandu, Nepal |
| authorships[5].author.id | https://openalex.org/A5044935228 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9696-9016 |
| authorships[5].author.display_name | Anurag Kumar Singh |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I105454292 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Chemical Technology, Guru Govind Singh Indraprastha University, New Delhi, India |
| authorships[5].institutions[0].id | https://openalex.org/I105454292 |
| authorships[5].institutions[0].ror | https://ror.org/034q1za58 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I105454292 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Guru Gobind Singh Indraprastha University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | None Anurag Kumar Singh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Chemical Technology, Guru Govind Singh Indraprastha University, New Delhi, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://watersa.net/article/download/18543/21342 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comprehensive performance analysis of training functions in flow prediction model using artificial neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7620999813079834 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17159/wsa/2024.v50.i2.4099 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181252140 |
| best_oa_location.source.issn | 0378-4738, 1816-7950 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0378-4738 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Water SA |
| best_oa_location.source.host_organization | https://openalex.org/P4310315334 |
| best_oa_location.source.host_organization_name | Water Research Commission |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315334 |
| best_oa_location.source.host_organization_lineage_names | Water Research Commission |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://watersa.net/article/download/18543/21342 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Water SA |
| best_oa_location.landing_page_url | https://doi.org/10.17159/wsa/2024.v50.i2.4099 |
| primary_location.id | doi:10.17159/wsa/2024.v50.i2.4099 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181252140 |
| primary_location.source.issn | 0378-4738, 1816-7950 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0378-4738 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Water SA |
| primary_location.source.host_organization | https://openalex.org/P4310315334 |
| primary_location.source.host_organization_name | Water Research Commission |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315334 |
| primary_location.source.host_organization_lineage_names | Water Research Commission |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://watersa.net/article/download/18543/21342 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Water SA |
| primary_location.landing_page_url | https://doi.org/10.17159/wsa/2024.v50.i2.4099 |
| publication_date | 2024-04-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2077323522, https://openalex.org/W2083059431, https://openalex.org/W2743017312, https://openalex.org/W3008269718, https://openalex.org/W1996118950, https://openalex.org/W2920875273, https://openalex.org/W2792779844, https://openalex.org/W2027043498, https://openalex.org/W2040870580, https://openalex.org/W2968912269, https://openalex.org/W2996139122, https://openalex.org/W4200327103, https://openalex.org/W2033904036, https://openalex.org/W2491443197, https://openalex.org/W2772453098, https://openalex.org/W1967386919, https://openalex.org/W3128290931, https://openalex.org/W2104269509, https://openalex.org/W3165278256, https://openalex.org/W3185010272, https://openalex.org/W2037301244, https://openalex.org/W1964670816, https://openalex.org/W4247963159, https://openalex.org/W3087848758, https://openalex.org/W2059804518, https://openalex.org/W3170702380, https://openalex.org/W3004447104, https://openalex.org/W2072708097, https://openalex.org/W2905485021, https://openalex.org/W3032907420, https://openalex.org/W2993767981, https://openalex.org/W2320618658, https://openalex.org/W2089268064, https://openalex.org/W2965751469, https://openalex.org/W2062581418, https://openalex.org/W4376874889, https://openalex.org/W2109607740, https://openalex.org/W1965689554, https://openalex.org/W2099449267, https://openalex.org/W2072070605, https://openalex.org/W2078802459, https://openalex.org/W4387715803, https://openalex.org/W2899023746, https://openalex.org/W2167897410, https://openalex.org/W2116712833, https://openalex.org/W2095909648, https://openalex.org/W2932382704, https://openalex.org/W4236713979, https://openalex.org/W3048436541, https://openalex.org/W2890687804, https://openalex.org/W4206291720, https://openalex.org/W2397349486, https://openalex.org/W3154817805, https://openalex.org/W4283212038, https://openalex.org/W3087236291, https://openalex.org/W2102017823, https://openalex.org/W2027377517 |
| referenced_works_count | 57 |
| abstract_inverted_index.3 | 82 |
| abstract_inverted_index.a | 60, 76, 184 |
| abstract_inverted_index.10 | 45 |
| abstract_inverted_index.In | 204 |
| abstract_inverted_index.an | 101 |
| abstract_inverted_index.at | 55, 75 |
| abstract_inverted_index.be | 202 |
| abstract_inverted_index.in | 63, 100, 123, 223 |
| abstract_inverted_index.is | 59, 126 |
| abstract_inverted_index.of | 17, 24, 35, 47, 52, 108, 112, 130, 137, 175, 191, 220 |
| abstract_inverted_index.to | 30, 87, 210 |
| abstract_inverted_index.ANN | 102 |
| abstract_inverted_index.The | 67, 116 |
| abstract_inverted_index.and | 20, 73, 110, 119, 135, 170, 178, 198, 217 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 7, 14, 104, 143, 160, 187 |
| abstract_inverted_index.may | 201 |
| abstract_inverted_index.the | 15, 21, 32, 64, 80, 89, 127, 138, 144, 148, 152, 157, 161, 218, 224 |
| abstract_inverted_index.This | 27, 181 |
| abstract_inverted_index.best | 158 |
| abstract_inverted_index.data | 51, 86, 199 |
| abstract_inverted_index.each | 113 |
| abstract_inverted_index.flow | 12, 41, 50, 68, 85, 92, 189 |
| abstract_inverted_index.help | 209 |
| abstract_inverted_index.mean | 167, 171 |
| abstract_inverted_index.most | 117, 139 |
| abstract_inverted_index.root | 166 |
| abstract_inverted_index.this | 124, 206 |
| abstract_inverted_index.were | 71, 98 |
| abstract_inverted_index.will | 208 |
| abstract_inverted_index.(ANN) | 39 |
| abstract_inverted_index.1-day | 90 |
| abstract_inverted_index.Among | 147 |
| abstract_inverted_index.Eight | 94 |
| abstract_inverted_index.ahead | 91 |
| abstract_inverted_index.aimed | 29 |
| abstract_inverted_index.based | 40 |
| abstract_inverted_index.basis | 186 |
| abstract_inverted_index.case. | 146 |
| abstract_inverted_index.daily | 48 |
| abstract_inverted_index.data. | 93 |
| abstract_inverted_index.early | 212 |
| abstract_inverted_index.error | 169, 173 |
| abstract_inverted_index.flood | 11 |
| abstract_inverted_index.model | 103, 162, 207 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.river | 49, 84 |
| abstract_inverted_index.study | 28, 125, 145, 182 |
| abstract_inverted_index.using | 44, 79 |
| abstract_inverted_index.where | 195 |
| abstract_inverted_index.which | 58 |
| abstract_inverted_index.years | 46 |
| abstract_inverted_index.0.866, | 176 |
| abstract_inverted_index.Higher | 0 |
| abstract_inverted_index.Nepal, | 57 |
| abstract_inverted_index.having | 163 |
| abstract_inverted_index.models | 43, 70 |
| abstract_inverted_index.neural | 37 |
| abstract_inverted_index.poorly | 5 |
| abstract_inverted_index.result | 121 |
| abstract_inverted_index.safety | 16, 219 |
| abstract_inverted_index.square | 168 |
| abstract_inverted_index.tested | 74 |
| abstract_inverted_index.values | 174 |
| abstract_inverted_index.209.578 | 177 |
| abstract_inverted_index.75.422, | 179 |
| abstract_inverted_index.days’ | 83 |
| abstract_inverted_index.improve | 211 |
| abstract_inverted_index.network | 38 |
| abstract_inverted_index.predict | 88 |
| abstract_inverted_index.region. | 66, 226 |
| abstract_inverted_index.station | 78 |
| abstract_inverted_index.system, | 214 |
| abstract_inverted_index.trained | 72 |
| abstract_inverted_index.various | 131 |
| abstract_inverted_index.warning | 213 |
| abstract_inverted_index.absolute | 172 |
| abstract_inverted_index.accuracy | 109 |
| abstract_inverted_index.accurate | 188 |
| abstract_inverted_index.employed | 99 |
| abstract_inverted_index.estimate | 31 |
| abstract_inverted_index.exhibits | 156 |
| abstract_inverted_index.function | 142, 155 |
| abstract_inverted_index.limited. | 203 |
| abstract_inverted_index.obtained | 122 |
| abstract_inverted_index.previous | 81 |
| abstract_inverted_index.provides | 183 |
| abstract_inverted_index.snow-fed | 61 |
| abstract_inverted_index.training | 96, 114, 132, 141, 149 |
| abstract_inverted_index.Himalayan | 1, 65, 225 |
| abstract_inverted_index.Kotagaun, | 56 |
| abstract_inverted_index.catchment | 54, 62 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.efficient | 140 |
| abstract_inverted_index.function. | 115 |
| abstract_inverted_index.functions | 97, 150 |
| abstract_inverted_index.involving | 10 |
| abstract_inverted_index.monitored | 6 |
| abstract_inverted_index.operation | 23 |
| abstract_inverted_index.planning, | 216 |
| abstract_inverted_index.precision | 111 |
| abstract_inverted_index.projects. | 26 |
| abstract_inverted_index.riverside | 18, 221 |
| abstract_inverted_index.validated | 120 |
| abstract_inverted_index.activities | 9 |
| abstract_inverted_index.artificial | 36 |
| abstract_inverted_index.assessment | 107 |
| abstract_inverted_index.catchments | 2, 194 |
| abstract_inverted_index.challenged | 193 |
| abstract_inverted_index.collection | 200 |
| abstract_inverted_index.comparison | 129 |
| abstract_inverted_index.hydropower | 25 |
| abstract_inverted_index.monitoring | 197 |
| abstract_inverted_index.prediction | 13, 42, 69, 190 |
| abstract_inverted_index.successful | 22 |
| abstract_inverted_index.Kaligandaki | 53 |
| abstract_inverted_index.communities | 19, 222 |
| abstract_inverted_index.comparative | 33 |
| abstract_inverted_index.efficiency, | 165 |
| abstract_inverted_index.fundamental | 185 |
| abstract_inverted_index.particular, | 205 |
| abstract_inverted_index.performance | 34, 159 |
| abstract_inverted_index.significant | 118 |
| abstract_inverted_index.statistical | 106 |
| abstract_inverted_index.functions’ | 133 |
| abstract_inverted_index.hydrological | 8, 77, 196, 215 |
| abstract_inverted_index.performance, | 134 |
| abstract_inverted_index.comprehensive | 105, 128 |
| abstract_inverted_index.investigated, | 151 |
| abstract_inverted_index.respectively. | 180 |
| abstract_inverted_index.Nash-Sutcliffe | 164 |
| abstract_inverted_index.identification | 136 |
| abstract_inverted_index.backpropagation | 154 |
| abstract_inverted_index.topographically | 192 |
| abstract_inverted_index.Levenberg-Marquardt | 153 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.77567594 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |