Comprehensive systematic review and meta-analysis: Evaluating artificial intelligence (AI) effectiveness and integration obstacles within anesthesiology Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5339/jemtac.2025.22
Background: Artificial intelligence (AI) is a multidisciplinary field that focuses on developing intelligent computer algorithms to carry out simple to complex tasks traditionally performed using human intelligence. In anesthesia, AI is rapidly becoming a transformative technology. However, its efficacy remains unknown. Therefore, this study aims to analyze the efficacy of AI in anesthesia by studying two main applications of AI: predicting anesthesia-related events and assisting with anesthesia-related procedures. Methods: A systematic search was performed for English-language records published from inception until June 2024 in PubMed, Google Scholar, IEEE Xplore, and Web of Science databases. Studies were included in this meta-analysis if they examined the role of any AI model in predicting hypotension, hypoxemia, and post-operative nausea and vomiting (PONV). Moreover, studies investigating the role of AI in guiding anesthesia-related procedures, such as tracheal intubation and ultrasound-guided nerve blocks, were included. The CMA software and STATA 16.0 were used for statistical analyses, while the Newcastle–Ottawa Scale was used for quality evaluation. Results: Twenty studies meeting the eligibility criteria were included in the analysis. The pooled results indicated that AI demonstrated good discrimination ability in predicting hypotension (area under the receiver operating characteristic curve (AUROC): 0.81), with the subgroup analysis showing that models incorporating machine-learning algorithms outperformed other models (AUROC: 0.93). Similarly, the pooled analysis showed that AI models had a good discriminatory capacity for predicting hypoxemia (AUROC: 0.81). However, AI demonstrated poor discriminatory capability in predicting PONV (AUROC: 0.68). Our analysis also showed that robotically assisted intubations were successful in both mannikins and humans (success rate: 98% and 92%). Similarly, robotically assisted ultrasound-guided blocks were successful in mannikins and humans (success rate: 96% for humans and mannikins). Conclusion: This study suggests that AI is useful for predicting anesthesia-related events and automating procedures such as intubation and ultrasound-guided nerve blocks. However, multiple barriers hindering the integration of AI into anesthesia, such as cost, privacy and security concerns, data quality, “black box”, and ethical issues need to be addressed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5339/jemtac.2025.22
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410317401
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410317401Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5339/jemtac.2025.22Digital Object Identifier
- Title
-
Comprehensive systematic review and meta-analysis: Evaluating artificial intelligence (AI) effectiveness and integration obstacles within anesthesiologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-13Full publication date if available
- Authors
-
Hany A Zaki, Hussam Elmelliti, Eman E. Shaban, Ahmed Shaban, Amira Shaban, Mohamed Elgassim, Nabil A. ShallikList of authors in order
- Landing page
-
https://doi.org/10.5339/jemtac.2025.22Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5339/jemtac.2025.22Direct OA link when available
- Concepts
-
Anesthesiology, Meta-analysis, Computer science, Artificial intelligence, Medicine, Internal medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410317401 |
|---|---|
| doi | https://doi.org/10.5339/jemtac.2025.22 |
| ids.doi | https://doi.org/10.5339/jemtac.2025.22 |
| ids.openalex | https://openalex.org/W4410317401 |
| fwci | 2.28477614 |
| type | article |
| title | Comprehensive systematic review and meta-analysis: Evaluating artificial intelligence (AI) effectiveness and integration obstacles within anesthesiology |
| biblio.issue | 2 |
| biblio.volume | 2025 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9836000204086304 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T11930 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9546999931335449 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac, Anesthesia and Surgical Outcomes |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779526319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7756834626197815 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q615057 |
| concepts[0].display_name | Anesthesiology |
| concepts[1].id | https://openalex.org/C95190672 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6454650163650513 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[1].display_name | Meta-analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43337365984916687 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36345887184143066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.27920931577682495 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1130504310131073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.061539262533187866 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/anesthesiology |
| keywords[0].score | 0.7756834626197815 |
| keywords[0].display_name | Anesthesiology |
| keywords[1].id | https://openalex.org/keywords/meta-analysis |
| keywords[1].score | 0.6454650163650513 |
| keywords[1].display_name | Meta-analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43337365984916687 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.36345887184143066 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.27920931577682495 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.1130504310131073 |
| keywords[5].display_name | Internal medicine |
| keywords[6].id | https://openalex.org/keywords/pathology |
| keywords[6].score | 0.061539262533187866 |
| keywords[6].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.5339/jemtac.2025.22 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764394186 |
| locations[0].source.issn | 1999-7086, 1999-7094 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-7086 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of emergency medicine, trauma & acute care |
| locations[0].source.host_organization | https://openalex.org/P4310320064 |
| locations[0].source.host_organization_name | HBKU Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320064 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Emergency Medicine, Trauma and Acute Care |
| locations[0].landing_page_url | https://doi.org/10.5339/jemtac.2025.22 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5080282788 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3994-7088 |
| authorships[0].author.display_name | Hany A Zaki |
| authorships[0].countries | QA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[0].affiliations[0].raw_affiliation_string | Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I60342839 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Medicine, Qatar University, Doha, Qatar |
| authorships[0].institutions[0].id | https://openalex.org/I49828101 |
| authorships[0].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[0].institutions[0].country_code | QA |
| authorships[0].institutions[0].display_name | Hamad Medical Corporation |
| authorships[0].institutions[1].id | https://openalex.org/I60342839 |
| authorships[0].institutions[1].ror | https://ror.org/00yhnba62 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I60342839 |
| authorships[0].institutions[1].country_code | QA |
| authorships[0].institutions[1].display_name | Qatar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hany A. Zaki |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Medicine, Qatar University, Doha, Qatar, Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[1].author.id | https://openalex.org/A5076208923 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5394-3120 |
| authorships[1].author.display_name | Hussam Elmelliti |
| authorships[1].countries | QA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[1].affiliations[0].raw_affiliation_string | Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[1].institutions[0].id | https://openalex.org/I49828101 |
| authorships[1].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[1].institutions[0].country_code | QA |
| authorships[1].institutions[0].display_name | Hamad Medical Corporation |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hussam Elmelliti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[2].author.id | https://openalex.org/A5103240717 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0661-9763 |
| authorships[2].author.display_name | Eman E. Shaban |
| authorships[2].affiliations[0].raw_affiliation_string | Cardiology Department, Al Jufairi Diagnosis and Treatment, MOH, Qatar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eman E. Shaban |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cardiology Department, Al Jufairi Diagnosis and Treatment, MOH, Qatar |
| authorships[3].author.id | https://openalex.org/A5102957250 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9402-5230 |
| authorships[3].author.display_name | Ahmed Shaban |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090611 |
| authorships[3].affiliations[0].raw_affiliation_string | Internal Medicine Department, Mansoura University Hospital, Egypt |
| authorships[3].institutions[0].id | https://openalex.org/I4210090611 |
| authorships[3].institutions[0].ror | https://ror.org/00c8rjz37 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090611 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | Mansoura University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ahmed Shaban |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Internal Medicine Department, Mansoura University Hospital, Egypt |
| authorships[4].author.id | https://openalex.org/A5019945701 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9218-4529 |
| authorships[4].author.display_name | Amira Shaban |
| authorships[4].countries | EG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210090611 |
| authorships[4].affiliations[0].raw_affiliation_string | Internal Medicine Department, Mansoura University Hospital, Egypt |
| authorships[4].institutions[0].id | https://openalex.org/I4210090611 |
| authorships[4].institutions[0].ror | https://ror.org/00c8rjz37 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210090611 |
| authorships[4].institutions[0].country_code | EG |
| authorships[4].institutions[0].display_name | Mansoura University Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Amira Shaban |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Internal Medicine Department, Mansoura University Hospital, Egypt |
| authorships[5].author.id | https://openalex.org/A5042151554 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6556-964X |
| authorships[5].author.display_name | Mohamed Elgassim |
| authorships[5].countries | QA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[5].affiliations[0].raw_affiliation_string | Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[5].institutions[0].id | https://openalex.org/I49828101 |
| authorships[5].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[5].institutions[0].country_code | QA |
| authorships[5].institutions[0].display_name | Hamad Medical Corporation |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mohamed Elgassim |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar |
| authorships[6].author.id | https://openalex.org/A5077482722 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8247-4394 |
| authorships[6].author.display_name | Nabil A. Shallik |
| authorships[6].countries | QA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[6].affiliations[0].raw_affiliation_string | Anaesthesia Department, Hamad Medical Corporation, Doha, Qatar *Correspondence: Hussam Elmelliti [email protected] |
| authorships[6].institutions[0].id | https://openalex.org/I49828101 |
| authorships[6].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[6].institutions[0].country_code | QA |
| authorships[6].institutions[0].display_name | Hamad Medical Corporation |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Nabil Shallik |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Anaesthesia Department, Hamad Medical Corporation, Doha, Qatar *Correspondence: Hussam Elmelliti [email protected] |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5339/jemtac.2025.22 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comprehensive systematic review and meta-analysis: Evaluating artificial intelligence (AI) effectiveness and integration obstacles within anesthesiology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9836000204086304 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2357927218, https://openalex.org/W2418691150, https://openalex.org/W2316939297, https://openalex.org/W3030000905, https://openalex.org/W3149547651, https://openalex.org/W4299841654, https://openalex.org/W2011480399 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5339/jemtac.2025.22 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764394186 |
| best_oa_location.source.issn | 1999-7086, 1999-7094 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-7086 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of emergency medicine, trauma & acute care |
| best_oa_location.source.host_organization | https://openalex.org/P4310320064 |
| best_oa_location.source.host_organization_name | HBKU Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320064 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Emergency Medicine, Trauma and Acute Care |
| best_oa_location.landing_page_url | https://doi.org/10.5339/jemtac.2025.22 |
| primary_location.id | doi:10.5339/jemtac.2025.22 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764394186 |
| primary_location.source.issn | 1999-7086, 1999-7094 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-7086 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of emergency medicine, trauma & acute care |
| primary_location.source.host_organization | https://openalex.org/P4310320064 |
| primary_location.source.host_organization_name | HBKU Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320064 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Emergency Medicine, Trauma and Acute Care |
| primary_location.landing_page_url | https://doi.org/10.5339/jemtac.2025.22 |
| publication_date | 2025-05-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 69 |
| abstract_inverted_index.a | 5, 33, 218 |
| abstract_inverted_index.AI | 29, 50, 107, 125, 177, 215, 228, 281, 305 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.as | 131, 292, 309 |
| abstract_inverted_index.be | 324 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.if | 100 |
| abstract_inverted_index.in | 51, 83, 97, 109, 126, 169, 182, 233, 248, 265 |
| abstract_inverted_index.is | 4, 30, 282 |
| abstract_inverted_index.of | 49, 58, 91, 105, 124, 304 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 15, 19, 45, 323 |
| abstract_inverted_index.96% | 271 |
| abstract_inverted_index.98% | 255 |
| abstract_inverted_index.AI: | 59 |
| abstract_inverted_index.CMA | 141 |
| abstract_inverted_index.Our | 238 |
| abstract_inverted_index.The | 140, 172 |
| abstract_inverted_index.Web | 90 |
| abstract_inverted_index.and | 63, 89, 113, 116, 134, 143, 251, 256, 267, 274, 288, 294, 312, 319 |
| abstract_inverted_index.any | 106 |
| abstract_inverted_index.for | 74, 148, 157, 222, 272, 284 |
| abstract_inverted_index.had | 217 |
| abstract_inverted_index.its | 37 |
| abstract_inverted_index.out | 17 |
| abstract_inverted_index.the | 47, 103, 122, 152, 164, 170, 187, 195, 210, 302 |
| abstract_inverted_index.two | 55 |
| abstract_inverted_index.was | 72, 155 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.16.0 | 145 |
| abstract_inverted_index.2024 | 82 |
| abstract_inverted_index.IEEE | 87 |
| abstract_inverted_index.June | 81 |
| abstract_inverted_index.PONV | 235 |
| abstract_inverted_index.This | 277 |
| abstract_inverted_index.aims | 44 |
| abstract_inverted_index.also | 240 |
| abstract_inverted_index.both | 249 |
| abstract_inverted_index.data | 315 |
| abstract_inverted_index.from | 78 |
| abstract_inverted_index.good | 179, 219 |
| abstract_inverted_index.into | 306 |
| abstract_inverted_index.main | 56 |
| abstract_inverted_index.need | 322 |
| abstract_inverted_index.poor | 230 |
| abstract_inverted_index.role | 104, 123 |
| abstract_inverted_index.such | 130, 291, 308 |
| abstract_inverted_index.that | 8, 176, 199, 214, 242, 280 |
| abstract_inverted_index.they | 101 |
| abstract_inverted_index.this | 42, 98 |
| abstract_inverted_index.used | 147, 156 |
| abstract_inverted_index.were | 95, 138, 146, 167, 246, 263 |
| abstract_inverted_index.with | 65, 194 |
| abstract_inverted_index.(area | 185 |
| abstract_inverted_index.92%). | 257 |
| abstract_inverted_index.STATA | 144 |
| abstract_inverted_index.Scale | 154 |
| abstract_inverted_index.carry | 16 |
| abstract_inverted_index.cost, | 310 |
| abstract_inverted_index.curve | 191 |
| abstract_inverted_index.field | 7 |
| abstract_inverted_index.human | 25 |
| abstract_inverted_index.model | 108 |
| abstract_inverted_index.nerve | 136, 296 |
| abstract_inverted_index.other | 205 |
| abstract_inverted_index.rate: | 254, 270 |
| abstract_inverted_index.study | 43, 278 |
| abstract_inverted_index.tasks | 21 |
| abstract_inverted_index.under | 186 |
| abstract_inverted_index.until | 80 |
| abstract_inverted_index.using | 24 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.0.68). | 237 |
| abstract_inverted_index.0.81), | 193 |
| abstract_inverted_index.0.81). | 226 |
| abstract_inverted_index.0.93). | 208 |
| abstract_inverted_index.Google | 85 |
| abstract_inverted_index.Twenty | 161 |
| abstract_inverted_index.blocks | 262 |
| abstract_inverted_index.events | 62, 287 |
| abstract_inverted_index.humans | 252, 268, 273 |
| abstract_inverted_index.issues | 321 |
| abstract_inverted_index.models | 200, 206, 216 |
| abstract_inverted_index.nausea | 115 |
| abstract_inverted_index.pooled | 173, 211 |
| abstract_inverted_index.search | 71 |
| abstract_inverted_index.showed | 213, 241 |
| abstract_inverted_index.simple | 18 |
| abstract_inverted_index.useful | 283 |
| abstract_inverted_index.(AUROC: | 207, 225, 236 |
| abstract_inverted_index.(PONV). | 118 |
| abstract_inverted_index.PubMed, | 84 |
| abstract_inverted_index.Science | 92 |
| abstract_inverted_index.Studies | 94 |
| abstract_inverted_index.Xplore, | 88 |
| abstract_inverted_index.ability | 181 |
| abstract_inverted_index.analyze | 46 |
| abstract_inverted_index.blocks, | 137 |
| abstract_inverted_index.blocks. | 297 |
| abstract_inverted_index.box”, | 318 |
| abstract_inverted_index.complex | 20 |
| abstract_inverted_index.ethical | 320 |
| abstract_inverted_index.focuses | 9 |
| abstract_inverted_index.guiding | 127 |
| abstract_inverted_index.meeting | 163 |
| abstract_inverted_index.privacy | 311 |
| abstract_inverted_index.quality | 158 |
| abstract_inverted_index.rapidly | 31 |
| abstract_inverted_index.records | 76 |
| abstract_inverted_index.remains | 39 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.showing | 198 |
| abstract_inverted_index.studies | 120, 162 |
| abstract_inverted_index.(AUROC): | 192 |
| abstract_inverted_index.(success | 253, 269 |
| abstract_inverted_index.However, | 36, 227, 298 |
| abstract_inverted_index.Methods: | 68 |
| abstract_inverted_index.Results: | 160 |
| abstract_inverted_index.Scholar, | 86 |
| abstract_inverted_index.analysis | 197, 212, 239 |
| abstract_inverted_index.assisted | 244, 260 |
| abstract_inverted_index.barriers | 300 |
| abstract_inverted_index.becoming | 32 |
| abstract_inverted_index.capacity | 221 |
| abstract_inverted_index.computer | 13 |
| abstract_inverted_index.criteria | 166 |
| abstract_inverted_index.efficacy | 38, 48 |
| abstract_inverted_index.examined | 102 |
| abstract_inverted_index.included | 96, 168 |
| abstract_inverted_index.multiple | 299 |
| abstract_inverted_index.quality, | 316 |
| abstract_inverted_index.receiver | 188 |
| abstract_inverted_index.security | 313 |
| abstract_inverted_index.software | 142 |
| abstract_inverted_index.studying | 54 |
| abstract_inverted_index.subgroup | 196 |
| abstract_inverted_index.suggests | 279 |
| abstract_inverted_index.tracheal | 132 |
| abstract_inverted_index.unknown. | 40 |
| abstract_inverted_index.vomiting | 117 |
| abstract_inverted_index.“black | 317 |
| abstract_inverted_index.Moreover, | 119 |
| abstract_inverted_index.analyses, | 150 |
| abstract_inverted_index.analysis. | 171 |
| abstract_inverted_index.assisting | 64 |
| abstract_inverted_index.concerns, | 314 |
| abstract_inverted_index.hindering | 301 |
| abstract_inverted_index.hypoxemia | 224 |
| abstract_inverted_index.inception | 79 |
| abstract_inverted_index.included. | 139 |
| abstract_inverted_index.indicated | 175 |
| abstract_inverted_index.mannikins | 250, 266 |
| abstract_inverted_index.operating | 189 |
| abstract_inverted_index.performed | 23, 73 |
| abstract_inverted_index.published | 77 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.Similarly, | 209, 258 |
| abstract_inverted_index.Therefore, | 41 |
| abstract_inverted_index.addressed. | 325 |
| abstract_inverted_index.algorithms | 14, 203 |
| abstract_inverted_index.anesthesia | 52 |
| abstract_inverted_index.automating | 289 |
| abstract_inverted_index.capability | 232 |
| abstract_inverted_index.databases. | 93 |
| abstract_inverted_index.developing | 11 |
| abstract_inverted_index.hypoxemia, | 112 |
| abstract_inverted_index.intubation | 133, 293 |
| abstract_inverted_index.predicting | 60, 110, 183, 223, 234, 285 |
| abstract_inverted_index.procedures | 290 |
| abstract_inverted_index.successful | 247, 264 |
| abstract_inverted_index.systematic | 70 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Conclusion: | 276 |
| abstract_inverted_index.anesthesia, | 28, 307 |
| abstract_inverted_index.eligibility | 165 |
| abstract_inverted_index.evaluation. | 159 |
| abstract_inverted_index.hypotension | 184 |
| abstract_inverted_index.integration | 303 |
| abstract_inverted_index.intelligent | 12 |
| abstract_inverted_index.intubations | 245 |
| abstract_inverted_index.mannikins). | 275 |
| abstract_inverted_index.procedures, | 129 |
| abstract_inverted_index.procedures. | 67 |
| abstract_inverted_index.robotically | 243, 259 |
| abstract_inverted_index.statistical | 149 |
| abstract_inverted_index.technology. | 35 |
| abstract_inverted_index.applications | 57 |
| abstract_inverted_index.demonstrated | 178, 229 |
| abstract_inverted_index.hypotension, | 111 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.outperformed | 204 |
| abstract_inverted_index.incorporating | 201 |
| abstract_inverted_index.intelligence. | 26 |
| abstract_inverted_index.investigating | 121 |
| abstract_inverted_index.meta-analysis | 99 |
| abstract_inverted_index.traditionally | 22 |
| abstract_inverted_index.characteristic | 190 |
| abstract_inverted_index.discrimination | 180 |
| abstract_inverted_index.discriminatory | 220, 231 |
| abstract_inverted_index.post-operative | 114 |
| abstract_inverted_index.transformative | 34 |
| abstract_inverted_index.English-language | 75 |
| abstract_inverted_index.machine-learning | 202 |
| abstract_inverted_index.multidisciplinary | 6 |
| abstract_inverted_index.ultrasound-guided | 135, 261, 295 |
| abstract_inverted_index.Newcastle–Ottawa | 153 |
| abstract_inverted_index.anesthesia-related | 61, 66, 128, 286 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.78216561 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |