Compressing PET images using discrete cosine and shearlet transform with potential storage applications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1063/5.0186349
Aim: The aim of this study was to compare discrete cosine transform (DCT) and shearlet transform for positron emission tomography (PET) image compression. To identify a better transform-based compression platform. Materials and methods: 30 PET images were collected each for shearlet and DCT for compression. For calculating the compression ratio, size of the original image was divided by compressed image. With the help of SPSS software, significance between the data was calculated. Result: There was a statistical insignificance between shearlet and DCT based compression ratios (CR) (P=0.235) (P>0.05 independent sample t test). Conclusion: DCT based compression ratio was seen to be higher (0.89) than that of shearlet transform (0.69). Hence, it discloses that DCT appears to have a better compression ratio even though the data seemed to be insignificant.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0186349
- https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdf
- OA Status
- bronze
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393079437
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393079437Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0186349Digital Object Identifier
- Title
-
Compressing PET images using discrete cosine and shearlet transform with potential storage applicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Naveen Srinivasan, Nibedita DeyList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0186349Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdfDirect OA link when available
- Concepts
-
Discrete cosine transform, Computer science, Transform coding, Computer graphics (images), Lapped transform, Computer vision, Artificial intelligence, Shearlet, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393079437 |
|---|---|
| doi | https://doi.org/10.1063/5.0186349 |
| ids.doi | https://doi.org/10.1063/5.0186349 |
| ids.openalex | https://openalex.org/W4393079437 |
| fwci | 0.0 |
| type | article |
| title | Compressing PET images using discrete cosine and shearlet transform with potential storage applications |
| biblio.issue | |
| biblio.volume | 3082 |
| biblio.last_page | 090006 |
| biblio.first_page | 090006 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T12923 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2221639 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7810825109481812 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2877 |
| concepts[0].display_name | Discrete cosine transform |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6689087748527527 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C169805256 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5282769799232483 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1361381 |
| concepts[2].display_name | Transform coding |
| concepts[3].id | https://openalex.org/C121684516 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4717696011066437 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[3].display_name | Computer graphics (images) |
| concepts[4].id | https://openalex.org/C91458471 |
| concepts[4].level | 5 |
| concepts[4].score | 0.4693411588668823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17096468 |
| concepts[4].display_name | Lapped transform |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44889217615127563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44582122564315796 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C67795661 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41103723645210266 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17018993 |
| concepts[7].display_name | Shearlet |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3382485508918762 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/discrete-cosine-transform |
| keywords[0].score | 0.7810825109481812 |
| keywords[0].display_name | Discrete cosine transform |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6689087748527527 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transform-coding |
| keywords[2].score | 0.5282769799232483 |
| keywords[2].display_name | Transform coding |
| keywords[3].id | https://openalex.org/keywords/computer-graphics |
| keywords[3].score | 0.4717696011066437 |
| keywords[3].display_name | Computer graphics (images) |
| keywords[4].id | https://openalex.org/keywords/lapped-transform |
| keywords[4].score | 0.4693411588668823 |
| keywords[4].display_name | Lapped transform |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.44889217615127563 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.44582122564315796 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/shearlet |
| keywords[7].score | 0.41103723645210266 |
| keywords[7].display_name | Shearlet |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.3382485508918762 |
| keywords[8].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1063/5.0186349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764696622 |
| locations[0].source.issn | 0094-243X, 1551-7616, 1935-0465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-243X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIP conference proceedings |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0186349 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103949490 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Naveen Srinivasan |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I85461943 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Scholar, Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu. India |
| authorships[0].institutions[0].id | https://openalex.org/I85461943 |
| authorships[0].institutions[0].ror | https://ror.org/0034me914 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I85461943 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Saveetha University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Naveen Srinivasan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Research Scholar, Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu. India |
| authorships[1].author.id | https://openalex.org/A5085596920 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4645-5612 |
| authorships[1].author.display_name | Nibedita Dey |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I85461943 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Scholar, Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu. India |
| authorships[1].institutions[0].id | https://openalex.org/I85461943 |
| authorships[1].institutions[0].ror | https://ror.org/0034me914 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I85461943 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Saveetha University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nibedita Dey |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Research Scholar, Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu. India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Compressing PET images using discrete cosine and shearlet transform with potential storage applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2258231948, https://openalex.org/W2162505377, https://openalex.org/W2094583657, https://openalex.org/W2111266495, https://openalex.org/W2112852877, https://openalex.org/W2115252864, https://openalex.org/W2106400387, https://openalex.org/W2119239074, https://openalex.org/W2133833176, https://openalex.org/W2128618986 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1063/5.0186349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764696622 |
| best_oa_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-243X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIP conference proceedings |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0186349 |
| primary_location.id | doi:10.1063/5.0186349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764696622 |
| primary_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-243X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIP conference proceedings |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186349/19843767/090006_1_5.0186349.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0186349 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2326499964, https://openalex.org/W2130265750, https://openalex.org/W2626749561, https://openalex.org/W2082340261, https://openalex.org/W4243773224, https://openalex.org/W3000363979, https://openalex.org/W2597341482, https://openalex.org/W2889827362, https://openalex.org/W1970850322, https://openalex.org/W2766406131, https://openalex.org/W3105337300, https://openalex.org/W2919575343 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 25, 75, 117 |
| abstract_inverted_index.t | 90 |
| abstract_inverted_index.30 | 33 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.be | 100, 127 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.it | 110 |
| abstract_inverted_index.of | 3, 51, 63, 105 |
| abstract_inverted_index.to | 7, 99, 115, 126 |
| abstract_inverted_index.DCT | 42, 81, 93, 113 |
| abstract_inverted_index.For | 45 |
| abstract_inverted_index.PET | 34 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.aim | 2 |
| abstract_inverted_index.and | 13, 31, 41, 80 |
| abstract_inverted_index.for | 16, 39, 43 |
| abstract_inverted_index.the | 47, 52, 61, 68, 123 |
| abstract_inverted_index.was | 6, 55, 70, 74, 97 |
| abstract_inverted_index.(CR) | 85 |
| abstract_inverted_index.Aim: | 0 |
| abstract_inverted_index.SPSS | 64 |
| abstract_inverted_index.With | 60 |
| abstract_inverted_index.data | 69, 124 |
| abstract_inverted_index.each | 38 |
| abstract_inverted_index.even | 121 |
| abstract_inverted_index.have | 116 |
| abstract_inverted_index.help | 62 |
| abstract_inverted_index.seen | 98 |
| abstract_inverted_index.size | 50 |
| abstract_inverted_index.than | 103 |
| abstract_inverted_index.that | 104, 112 |
| abstract_inverted_index.this | 4 |
| abstract_inverted_index.were | 36 |
| abstract_inverted_index.(DCT) | 12 |
| abstract_inverted_index.(PET) | 20 |
| abstract_inverted_index.There | 73 |
| abstract_inverted_index.based | 82, 94 |
| abstract_inverted_index.image | 21, 54 |
| abstract_inverted_index.ratio | 96, 120 |
| abstract_inverted_index.study | 5 |
| abstract_inverted_index.(0.89) | 102 |
| abstract_inverted_index.Hence, | 109 |
| abstract_inverted_index.better | 26, 118 |
| abstract_inverted_index.cosine | 10 |
| abstract_inverted_index.higher | 101 |
| abstract_inverted_index.image. | 59 |
| abstract_inverted_index.images | 35 |
| abstract_inverted_index.ratio, | 49 |
| abstract_inverted_index.ratios | 84 |
| abstract_inverted_index.sample | 89 |
| abstract_inverted_index.seemed | 125 |
| abstract_inverted_index.test). | 91 |
| abstract_inverted_index.though | 122 |
| abstract_inverted_index.(0.69). | 108 |
| abstract_inverted_index.(P>0.05 | 87 |
| abstract_inverted_index.Result: | 72 |
| abstract_inverted_index.appears | 114 |
| abstract_inverted_index.between | 67, 78 |
| abstract_inverted_index.compare | 8 |
| abstract_inverted_index.divided | 56 |
| abstract_inverted_index.discrete | 9 |
| abstract_inverted_index.emission | 18 |
| abstract_inverted_index.identify | 24 |
| abstract_inverted_index.methods: | 32 |
| abstract_inverted_index.original | 53 |
| abstract_inverted_index.positron | 17 |
| abstract_inverted_index.shearlet | 14, 40, 79, 106 |
| abstract_inverted_index.(P=0.235) | 86 |
| abstract_inverted_index.Materials | 30 |
| abstract_inverted_index.collected | 37 |
| abstract_inverted_index.discloses | 111 |
| abstract_inverted_index.platform. | 29 |
| abstract_inverted_index.software, | 65 |
| abstract_inverted_index.transform | 11, 15, 107 |
| abstract_inverted_index.compressed | 58 |
| abstract_inverted_index.tomography | 19 |
| abstract_inverted_index.Conclusion: | 92 |
| abstract_inverted_index.calculated. | 71 |
| abstract_inverted_index.calculating | 46 |
| abstract_inverted_index.compression | 28, 48, 83, 95, 119 |
| abstract_inverted_index.independent | 88 |
| abstract_inverted_index.statistical | 76 |
| abstract_inverted_index.compression. | 22, 44 |
| abstract_inverted_index.significance | 66 |
| abstract_inverted_index.insignificance | 77 |
| abstract_inverted_index.insignificant. | 128 |
| abstract_inverted_index.transform-based | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.05925405 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |