Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7588738
Cressoni M, Cozzi A, Schiaffino S, Cadringher P, Vitali P, Basso G, Ippolito D, Sardanelli F. Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs. Eur Radiol Exp. 2022 Aug 29;6(1):37. doi: 10.1186/s41747-022-00292-y. PMID: 36031643; PMCID: PMC9420683. Abstract Background: Computed tomography perfusion imaging (CTPI) by repeated scanning has clinical relevance but implies relatively high radiation exposure. We present a method to measure perfusion from two CT scan phases only, considering tissue enhancement, feeding vessel (aortic) peak enhancement, and bolus shape. Methods: CTPI scans (each with 40 frames acquired every 1.5 s) of 11 patients with advanced hepatocellular carcinoma (HCC) enrolled between 2012 and 2016 were retrospectively analysed (aged 69 ± 9 years, 8/11 males). Perfusion was defined as the maximal slope of the time-enhancement curve divided by the peak enhancement of the feeding vessel (aorta). Perfusion was computed two times, first using the maximum slope derived from all data points and then using the peak tissue enhancement and the bolus shape obtained from the aortic curve. Results: Perfusion values from the two methods were linearly related (r2 = 0.92, p < 0.001; Bland-Altman analysis bias -0.12). The mathematical model showed that the perfusion ratio of two ROIs with the same feeding vessel (aorta) corresponds to their peak enhancement ratio (r2 = 0.55, p < 0.001; Bland-Altman analysis bias -0.68). The relationship between perfusion and tissue enhancement is predicted to be linear in the clinical range of interest, being only function of perfusion, peak feeding vessel enhancement, and bolus shape. Conclusions: This proof-of-concept study showed that perfusion values of HCC, kidney, and pancreas could be computed using enhancement measured only with two CT scan phases, if aortic peak enhancement and bolus shape are known.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://zenodo.org/record/7588738
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393729251
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393729251Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7588738Digital Object Identifier
- Title
-
Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-31Full publication date if available
- Authors
-
Massimo Cressoni, Andrea Cozzi, Simone Schiaffino, Paolo Cadringher, Paolo Vitali, Gianpaolo Basso, Davide Ippolito, Francesco SardanelliList of authors in order
- Landing page
-
https://zenodo.org/record/7588738Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/7588738Direct OA link when available
- Concepts
-
Contrast (vision), Perfusion, Proof of concept, Computation, Computer science, Nuclear medicine, Biomedical engineering, Radiology, Medicine, Algorithm, Artificial intelligence, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393729251 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7588738 |
| ids.doi | https://doi.org/10.5281/zenodo.7588738 |
| ids.openalex | https://openalex.org/W4393729251 |
| fwci | |
| type | dataset |
| title | Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11885 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | MRI in cancer diagnosis |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10958 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9825000166893005 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Ultrasound and Hyperthermia Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776502983 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7034205198287964 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[0].display_name | Contrast (vision) |
| concepts[1].id | https://openalex.org/C146957229 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6060251593589783 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1266915 |
| concepts[1].display_name | Perfusion |
| concepts[2].id | https://openalex.org/C124978682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5969004034996033 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1201019 |
| concepts[2].display_name | Proof of concept |
| concepts[3].id | https://openalex.org/C45374587 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5184028148651123 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[3].display_name | Computation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4400307238101959 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2989005 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3825344443321228 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[5].display_name | Nuclear medicine |
| concepts[6].id | https://openalex.org/C136229726 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3459295332431793 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[6].display_name | Biomedical engineering |
| concepts[7].id | https://openalex.org/C126838900 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3089497983455658 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[7].display_name | Radiology |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2896084785461426 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2280379831790924 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17623144388198853 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/contrast |
| keywords[0].score | 0.7034205198287964 |
| keywords[0].display_name | Contrast (vision) |
| keywords[1].id | https://openalex.org/keywords/perfusion |
| keywords[1].score | 0.6060251593589783 |
| keywords[1].display_name | Perfusion |
| keywords[2].id | https://openalex.org/keywords/proof-of-concept |
| keywords[2].score | 0.5969004034996033 |
| keywords[2].display_name | Proof of concept |
| keywords[3].id | https://openalex.org/keywords/computation |
| keywords[3].score | 0.5184028148651123 |
| keywords[3].display_name | Computation |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4400307238101959 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[5].score | 0.3825344443321228 |
| keywords[5].display_name | Nuclear medicine |
| keywords[6].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[6].score | 0.3459295332431793 |
| keywords[6].display_name | Biomedical engineering |
| keywords[7].id | https://openalex.org/keywords/radiology |
| keywords[7].score | 0.3089497983455658 |
| keywords[7].display_name | Radiology |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.2896084785461426 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.2280379831790924 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.17623144388198853 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:7588738 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://zenodo.org/record/7588738 |
| locations[1].id | doi:10.5281/zenodo.7588738 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | dataset |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.7588738 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5074000031 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0089-2905 |
| authorships[0].author.display_name | Massimo Cressoni |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[0].affiliations[0].raw_affiliation_string | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. |
| authorships[0].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[0].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Massimo Cressoni |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. |
| authorships[1].author.id | https://openalex.org/A5046747314 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4922-7065 |
| authorships[1].author.display_name | Andrea Cozzi |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[1].affiliations[0].raw_affiliation_string | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[1].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrea Cozzi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. [email protected]. |
| authorships[2].author.id | https://openalex.org/A5031004968 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4243-888X |
| authorships[2].author.display_name | Simone Schiaffino |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[2].affiliations[0].raw_affiliation_string | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. |
| authorships[2].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[2].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Simone Schiaffino |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy. |
| authorships[3].author.id | https://openalex.org/A5029135841 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Paolo Cadringher |
| authorships[3].affiliations[0].raw_affiliation_string | Elekton S.A.S., Regione Crena 15A, 14041, Agliano Terme, Italy. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Paolo Cadringher |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Elekton S.A.S., Regione Crena 15A, 14041, Agliano Terme, Italy. |
| authorships[4].author.id | https://openalex.org/A5102804025 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9204-2678 |
| authorships[4].author.display_name | Paolo Vitali |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189158943 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy. |
| authorships[4].institutions[0].id | https://openalex.org/I189158943 |
| authorships[4].institutions[0].ror | https://ror.org/00wjc7c48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189158943 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Milan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Paolo Vitali |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy. |
| authorships[5].author.id | https://openalex.org/A5091376976 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6245-9402 |
| authorships[5].author.display_name | Gianpaolo Basso |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I66752286 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy. |
| authorships[5].institutions[0].id | https://openalex.org/I66752286 |
| authorships[5].institutions[0].ror | https://ror.org/01ynf4891 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I66752286 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | University of Milano-Bicocca |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gianpaolo Basso |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy. |
| authorships[6].author.id | https://openalex.org/A5043472353 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2696-7047 |
| authorships[6].author.display_name | Davide Ippolito |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I66752286 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy. |
| authorships[6].institutions[0].id | https://openalex.org/I66752286 |
| authorships[6].institutions[0].ror | https://ror.org/01ynf4891 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I66752286 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | University of Milano-Bicocca |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Davide Ippolito |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy. |
| authorships[7].author.id | https://openalex.org/A5022596811 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6545-9427 |
| authorships[7].author.display_name | Francesco Sardanelli |
| authorships[7].countries | IT |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I189158943 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy. |
| authorships[7].institutions[0].id | https://openalex.org/I189158943 |
| authorships[7].institutions[0].ror | https://ror.org/00wjc7c48 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I189158943 |
| authorships[7].institutions[0].country_code | IT |
| authorships[7].institutions[0].display_name | University of Milan |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Francesco Sardanelli |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/7588738 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11885 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | MRI in cancer diagnosis |
| related_works | https://openalex.org/W2069592018, https://openalex.org/W2075740387, https://openalex.org/W2358990940, https://openalex.org/W2093931120, https://openalex.org/W2329812990, https://openalex.org/W2349116365, https://openalex.org/W3021708704, https://openalex.org/W4231775656, https://openalex.org/W2004231473, https://openalex.org/W1976370882 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:zenodo.org:7588738 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/7588738 |
| primary_location.id | pmh:oai:zenodo.org:7588738 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://zenodo.org/record/7588738 |
| publication_date | 2023-01-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.9 | 117 |
| abstract_inverted_index.= | 184, 217 |
| abstract_inverted_index.a | 26, 65 |
| abstract_inverted_index.p | 186, 219 |
| abstract_inverted_index.11 | 99 |
| abstract_inverted_index.40 | 92 |
| abstract_inverted_index.69 | 115 |
| abstract_inverted_index.A, | 3 |
| abstract_inverted_index.CT | 23, 72, 278 |
| abstract_inverted_index.D, | 13 |
| abstract_inverted_index.F. | 15 |
| abstract_inverted_index.G, | 11 |
| abstract_inverted_index.M, | 1 |
| abstract_inverted_index.P, | 7, 9 |
| abstract_inverted_index.S, | 5 |
| abstract_inverted_index.We | 63 |
| abstract_inverted_index.as | 124 |
| abstract_inverted_index.be | 236, 270 |
| abstract_inverted_index.by | 51, 133 |
| abstract_inverted_index.if | 281 |
| abstract_inverted_index.in | 238 |
| abstract_inverted_index.is | 233 |
| abstract_inverted_index.of | 17, 98, 128, 137, 201, 242, 247, 264 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.s) | 97 |
| abstract_inverted_index.to | 67, 211, 235 |
| abstract_inverted_index.± | 116 |
| abstract_inverted_index.1.5 | 96 |
| abstract_inverted_index.Aug | 36 |
| abstract_inverted_index.Eur | 32 |
| abstract_inverted_index.The | 193, 226 |
| abstract_inverted_index.all | 154 |
| abstract_inverted_index.and | 84, 109, 157, 164, 230, 253, 267, 285 |
| abstract_inverted_index.are | 288 |
| abstract_inverted_index.but | 57 |
| abstract_inverted_index.has | 54 |
| abstract_inverted_index.the | 125, 129, 134, 138, 149, 160, 165, 170, 177, 198, 205, 239 |
| abstract_inverted_index.two | 22, 71, 145, 178, 202, 277 |
| abstract_inverted_index.was | 122, 143 |
| abstract_inverted_index.< | 187, 220 |
| abstract_inverted_index.2012 | 108 |
| abstract_inverted_index.2016 | 110 |
| abstract_inverted_index.2022 | 35 |
| abstract_inverted_index.8/11 | 119 |
| abstract_inverted_index.Exp. | 34 |
| abstract_inverted_index.HCC, | 265 |
| abstract_inverted_index.ROIs | 203 |
| abstract_inverted_index.bias | 191, 224 |
| abstract_inverted_index.data | 155 |
| abstract_inverted_index.doi: | 38 |
| abstract_inverted_index.from | 70, 153, 169, 176 |
| abstract_inverted_index.high | 60 |
| abstract_inverted_index.only | 21, 245, 275 |
| abstract_inverted_index.peak | 82, 135, 161, 213, 249, 283 |
| abstract_inverted_index.same | 206 |
| abstract_inverted_index.scan | 24, 73, 279 |
| abstract_inverted_index.that | 197, 261 |
| abstract_inverted_index.then | 158 |
| abstract_inverted_index.were | 111, 180 |
| abstract_inverted_index.with | 91, 101, 204, 276 |
| abstract_inverted_index.(HCC) | 105 |
| abstract_inverted_index.(aged | 114 |
| abstract_inverted_index.(each | 90 |
| abstract_inverted_index.0.55, | 218 |
| abstract_inverted_index.0.92, | 185 |
| abstract_inverted_index.Basso | 10 |
| abstract_inverted_index.Cozzi | 2 |
| abstract_inverted_index.PMID: | 40 |
| abstract_inverted_index.being | 244 |
| abstract_inverted_index.bolus | 85, 166, 254, 286 |
| abstract_inverted_index.could | 269 |
| abstract_inverted_index.curve | 131 |
| abstract_inverted_index.every | 95 |
| abstract_inverted_index.first | 147 |
| abstract_inverted_index.model | 195 |
| abstract_inverted_index.only, | 75 |
| abstract_inverted_index.range | 241 |
| abstract_inverted_index.ratio | 200, 215 |
| abstract_inverted_index.scans | 89 |
| abstract_inverted_index.shape | 167, 287 |
| abstract_inverted_index.slope | 127, 151 |
| abstract_inverted_index.study | 28, 259 |
| abstract_inverted_index.their | 212 |
| abstract_inverted_index.using | 20, 148, 159, 272 |
| abstract_inverted_index.(CTPI) | 50 |
| abstract_inverted_index.0.001; | 188, 221 |
| abstract_inverted_index.PMCID: | 42 |
| abstract_inverted_index.Radiol | 33 |
| abstract_inverted_index.Vitali | 8 |
| abstract_inverted_index.aortic | 171, 282 |
| abstract_inverted_index.curve. | 172 |
| abstract_inverted_index.frames | 93 |
| abstract_inverted_index.known. | 289 |
| abstract_inverted_index.linear | 237 |
| abstract_inverted_index.method | 66 |
| abstract_inverted_index.phases | 74 |
| abstract_inverted_index.points | 156 |
| abstract_inverted_index.shape. | 86, 255 |
| abstract_inverted_index.showed | 196, 260 |
| abstract_inverted_index.times, | 146 |
| abstract_inverted_index.tissue | 77, 162, 231 |
| abstract_inverted_index.values | 175, 263 |
| abstract_inverted_index.vessel | 80, 140, 208, 251 |
| abstract_inverted_index.years, | 118 |
| abstract_inverted_index.(aorta) | 209 |
| abstract_inverted_index.-0.12). | 192 |
| abstract_inverted_index.-0.68). | 225 |
| abstract_inverted_index.between | 107, 228 |
| abstract_inverted_index.defined | 123 |
| abstract_inverted_index.derived | 152 |
| abstract_inverted_index.divided | 132 |
| abstract_inverted_index.feeding | 79, 139, 207, 250 |
| abstract_inverted_index.imaging | 49 |
| abstract_inverted_index.implies | 58 |
| abstract_inverted_index.kidney, | 266 |
| abstract_inverted_index.males). | 120 |
| abstract_inverted_index.maximal | 126 |
| abstract_inverted_index.maximum | 150 |
| abstract_inverted_index.measure | 68 |
| abstract_inverted_index.methods | 179 |
| abstract_inverted_index.organs. | 31 |
| abstract_inverted_index.phases, | 280 |
| abstract_inverted_index.phases: | 25 |
| abstract_inverted_index.present | 64 |
| abstract_inverted_index.related | 182 |
| abstract_inverted_index.(aorta). | 141 |
| abstract_inverted_index.(aortic) | 81 |
| abstract_inverted_index.Abstract | 44 |
| abstract_inverted_index.Cressoni | 0 |
| abstract_inverted_index.Ippolito | 12 |
| abstract_inverted_index.acquired | 94 |
| abstract_inverted_index.advanced | 102 |
| abstract_inverted_index.analysed | 113 |
| abstract_inverted_index.analysis | 190, 223 |
| abstract_inverted_index.clinical | 55, 240 |
| abstract_inverted_index.computed | 144, 271 |
| abstract_inverted_index.enrolled | 106 |
| abstract_inverted_index.function | 246 |
| abstract_inverted_index.linearly | 181 |
| abstract_inverted_index.measured | 274 |
| abstract_inverted_index.obtained | 168 |
| abstract_inverted_index.pancreas | 268 |
| abstract_inverted_index.patients | 100 |
| abstract_inverted_index.repeated | 52 |
| abstract_inverted_index.scanning | 53 |
| abstract_inverted_index.36031643; | 41 |
| abstract_inverted_index.Perfusion | 121, 142 |
| abstract_inverted_index.abdominal | 30 |
| abstract_inverted_index.carcinoma | 104 |
| abstract_inverted_index.exposure. | 62 |
| abstract_inverted_index.interest, | 243 |
| abstract_inverted_index.perfusion | 19, 48, 69, 199, 229, 262 |
| abstract_inverted_index.predicted | 234 |
| abstract_inverted_index.radiation | 61 |
| abstract_inverted_index.relevance | 56 |
| abstract_inverted_index.Cadringher | 6 |
| abstract_inverted_index.Sardanelli | 14 |
| abstract_inverted_index.Schiaffino | 4 |
| abstract_inverted_index.perfusion, | 248 |
| abstract_inverted_index.relatively | 59 |
| abstract_inverted_index.tomography | 47 |
| abstract_inverted_index.29;6(1):37. | 37 |
| abstract_inverted_index.Computation | 16 |
| abstract_inverted_index.PMC9420683. | 43 |
| abstract_inverted_index.considering | 76 |
| abstract_inverted_index.corresponds | 210 |
| abstract_inverted_index.enhancement | 136, 163, 214, 232, 273, 284 |
| abstract_inverted_index.Bland-Altman | 189, 222 |
| abstract_inverted_index.enhancement, | 78, 83, 252 |
| abstract_inverted_index.mathematical | 194 |
| abstract_inverted_index.relationship | 227 |
| abstract_inverted_index.</strong>CTPI | 88 |
| abstract_inverted_index.</strong>This | 257 |
| abstract_inverted_index.(r<sup>2</sup> | 183, 216 |
| abstract_inverted_index.hepatocellular | 103 |
| abstract_inverted_index.retrospectively | 112 |
| abstract_inverted_index.<strong>Methods: | 87 |
| abstract_inverted_index.<strong>Results: | 173 |
| abstract_inverted_index.proof-of-concept | 27, 258 |
| abstract_inverted_index.time-enhancement | 130 |
| abstract_inverted_index.</strong>Computed | 46 |
| abstract_inverted_index.contrast-enhanced | 18 |
| abstract_inverted_index.</strong>Perfusion | 174 |
| abstract_inverted_index.<strong>Background: | 45 |
| abstract_inverted_index.<strong>Conclusions: | 256 |
| abstract_inverted_index.10.1186/s41747-022-00292-y. | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |