Computation-through-Dynamics Benchmark: Simulated datasets and quality metrics for dynamical models of neural activity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.02.07.637062
A primary goal of systems neuroscience is to discover how ensembles of neurons transform inputs into goal-directed behavior, a process known as neural computation. A powerful framework for understanding neural computation uses neural dynamics – the rules that describe the temporal evolution of neural activity – to explain how goal-directed input-output transformations occur. As dynamical rules are not directly observable, we need computational models that can infer neural dynamics from recorded neural activity. We typically validate such models using synthetic datasets with known ground-truth dynamics, but unfortunately existing synthetic datasets don’t reflect fundamental features of neural computation and are thus poor proxies for neural systems. Further, the field lacks validated metrics for quantifying the accuracy of the dynamics inferred by models. The Computation-through-Dynamics Benchmark (CtDB) fills these critical gaps by providing: 1) synthetic datasets that reflect computational properties of biological neural circuits, 2) interpretable metrics for quantifying model performance, and 3) a standardized pipeline for training and evaluating models with or without known external inputs. In this manuscript, we demonstrate how CtDB can help guide the development, tuning, and troubleshooting of neural dynamics models. In summary, CtDB provides a critical platform for model developers to better understand and characterize neural computation through the lens of dynamics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.02.07.637062
- OA Status
- green
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407278427
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407278427Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.02.07.637062Digital Object Identifier
- Title
-
Computation-through-Dynamics Benchmark: Simulated datasets and quality metrics for dynamical models of neural activityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-08Full publication date if available
- Authors
-
Christopher Versteeg, Jonathan McCart, Mitchell Ostrow, David M. Zoltowski, Clayton Washington, Laura Driscoll, Olivier Codol, Jonathan A. Michaels, Scott W. Linderman, David Sussillo, Chethan PandarinathList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.02.07.637062Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.02.07.637062Direct OA link when available
- Concepts
-
Computer science, Benchmark (surveying), Computation, Artificial neural network, Artificial intelligence, Machine learning, Field (mathematics), Models of neural computation, System dynamics, Algorithm, Mathematics, Geography, Geodesy, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407278427 |
|---|---|
| doi | https://doi.org/10.1101/2025.02.07.637062 |
| ids.doi | https://doi.org/10.1101/2025.02.07.637062 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39975240 |
| ids.openalex | https://openalex.org/W4407278427 |
| fwci | 0.0 |
| type | preprint |
| title | Computation-through-Dynamics Benchmark: Simulated datasets and quality metrics for dynamical models of neural activity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T12611 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Reservoir Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7477793097496033 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6746467351913452 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6484400033950806 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6171373128890991 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6073943972587585 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5155417919158936 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C9652623 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5071213245391846 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[6].display_name | Field (mathematics) |
| concepts[7].id | https://openalex.org/C3832189 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45638659596443176 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8588916 |
| concepts[7].display_name | Models of neural computation |
| concepts[8].id | https://openalex.org/C77405623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41849660873413086 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q598451 |
| concepts[8].display_name | System dynamics |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16714376211166382 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07068285346031189 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7477793097496033 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.6746467351913452 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.6484400033950806 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.6171373128890991 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6073943972587585 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5155417919158936 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/field |
| keywords[6].score | 0.5071213245391846 |
| keywords[6].display_name | Field (mathematics) |
| keywords[7].id | https://openalex.org/keywords/models-of-neural-computation |
| keywords[7].score | 0.45638659596443176 |
| keywords[7].display_name | Models of neural computation |
| keywords[8].id | https://openalex.org/keywords/system-dynamics |
| keywords[8].score | 0.41849660873413086 |
| keywords[8].display_name | System dynamics |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.16714376211166382 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.07068285346031189 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2025.02.07.637062 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.02.07.637062 |
| locations[1].id | pmid:39975240 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39975240 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11839132 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11839132 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5008864063 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4269-5109 |
| authorships[0].author.display_name | Christopher Versteeg |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[0].affiliations[0].raw_affiliation_string | Emory University |
| authorships[0].institutions[0].id | https://openalex.org/I150468666 |
| authorships[0].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Emory University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christopher Versteeg |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Emory University |
| authorships[1].author.id | https://openalex.org/A5090737505 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6338-234X |
| authorships[1].author.display_name | Jonathan McCart |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[1].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I130701444 |
| authorships[1].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan D. McCart |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Georgia Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5092231224 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9732-548X |
| authorships[2].author.display_name | Mitchell Ostrow |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mitchell Ostrow |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5072582877 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0407-7841 |
| authorships[3].author.display_name | David M. Zoltowski |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[3].institutions[0].id | https://openalex.org/I97018004 |
| authorships[3].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stanford University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David M. Zoltowski |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Stanford University |
| authorships[4].author.id | https://openalex.org/A5031001429 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Clayton Washington |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[4].affiliations[0].raw_affiliation_string | Emory University |
| authorships[4].institutions[0].id | https://openalex.org/I150468666 |
| authorships[4].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Emory University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Clayton B. Washington |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Emory University |
| authorships[5].author.id | https://openalex.org/A5076546507 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5247-1857 |
| authorships[5].author.display_name | Laura Driscoll |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210140341, https://openalex.org/I4387153123 |
| authorships[5].affiliations[0].raw_affiliation_string | Allen Institute for Neural Dynamics |
| authorships[5].institutions[0].id | https://openalex.org/I4387153123 |
| authorships[5].institutions[0].ror | https://ror.org/04szwah67 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210140341, https://openalex.org/I4387153123 |
| authorships[5].institutions[0].country_code | |
| authorships[5].institutions[0].display_name | Allen Institute for Neural Dynamics |
| authorships[5].institutions[1].id | https://openalex.org/I4210140341 |
| authorships[5].institutions[1].ror | https://ror.org/03cpe7c52 |
| authorships[5].institutions[1].type | nonprofit |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210140341 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Allen Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Laura Driscoll |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Allen Institute for Neural Dynamics |
| authorships[6].author.id | https://openalex.org/A5055312755 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0796-5457 |
| authorships[6].author.display_name | Olivier Codol |
| authorships[6].countries | CA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Montreal |
| authorships[6].institutions[0].id | https://openalex.org/I70931966 |
| authorships[6].institutions[0].ror | https://ror.org/0161xgx34 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I70931966 |
| authorships[6].institutions[0].country_code | CA |
| authorships[6].institutions[0].display_name | Université de Montréal |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Olivier Codol |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Montreal |
| authorships[7].author.id | https://openalex.org/A5065364473 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5179-3181 |
| authorships[7].author.display_name | Jonathan A. Michaels |
| authorships[7].countries | CA |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I192455969 |
| authorships[7].affiliations[0].raw_affiliation_string | York University |
| authorships[7].institutions[0].id | https://openalex.org/I192455969 |
| authorships[7].institutions[0].ror | https://ror.org/05fq50484 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I192455969 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | York University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jonathan A Michaels |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | York University |
| authorships[8].author.id | https://openalex.org/A5054079047 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3878-9073 |
| authorships[8].author.display_name | Scott W. Linderman |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[8].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[8].institutions[0].id | https://openalex.org/I97018004 |
| authorships[8].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Stanford University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Scott W. Linderman |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Stanford University |
| authorships[9].author.id | https://openalex.org/A5054372964 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-1620-1264 |
| authorships[9].author.display_name | David Sussillo |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[9].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[9].institutions[0].id | https://openalex.org/I97018004 |
| authorships[9].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Stanford University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | David Sussillo |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Stanford University |
| authorships[10].author.id | https://openalex.org/A5065776938 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1241-1432 |
| authorships[10].author.display_name | Chethan Pandarinath |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[10].affiliations[0].raw_affiliation_string | Emory University |
| authorships[10].institutions[0].id | https://openalex.org/I150468666 |
| authorships[10].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Emory University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Chethan Pandarinath |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Emory University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.02.07.637062 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computation-through-Dynamics Benchmark: Simulated datasets and quality metrics for dynamical models of neural activity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2111622281, https://openalex.org/W2170504222, https://openalex.org/W2246189160, https://openalex.org/W2053996599, https://openalex.org/W1994142864, https://openalex.org/W2125010820, https://openalex.org/W3094116108, https://openalex.org/W2071563491 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2025.02.07.637062 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.02.07.637062 |
| primary_location.id | doi:10.1101/2025.02.07.637062 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.02.07.637062 |
| publication_date | 2025-02-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2159240874, https://openalex.org/W2141394518, https://openalex.org/W2128084896, https://openalex.org/W2040739363, https://openalex.org/W2030092068, https://openalex.org/W2067035505, https://openalex.org/W2102991522, https://openalex.org/W2099231026, https://openalex.org/W4246233237, https://openalex.org/W2152471738, https://openalex.org/W2087185095, https://openalex.org/W3038118776, https://openalex.org/W1661597557, https://openalex.org/W2135993484, https://openalex.org/W1980324747, https://openalex.org/W2963863227, https://openalex.org/W2510030309, https://openalex.org/W2621961142, https://openalex.org/W2718421337, https://openalex.org/W2336098282, https://openalex.org/W2808746463, https://openalex.org/W2899125907, https://openalex.org/W2951777958, https://openalex.org/W2950604305, https://openalex.org/W6912515347, https://openalex.org/W2963638622, https://openalex.org/W2969708557, https://openalex.org/W4295312788, https://openalex.org/W2908124316, https://openalex.org/W3041725488, https://openalex.org/W3035694286, https://openalex.org/W4287082356, https://openalex.org/W3211098576, https://openalex.org/W3166542472, https://openalex.org/W3205133954, https://openalex.org/W3209091531, https://openalex.org/W4291718754, https://openalex.org/W4281663412, https://openalex.org/W4310926265, https://openalex.org/W4389572946, https://openalex.org/W4388843221, https://openalex.org/W4388773384, https://openalex.org/W4386473157, https://openalex.org/W6950609307, https://openalex.org/W4386722175, https://openalex.org/W4392561680, https://openalex.org/W4399033757, https://openalex.org/W4394993690, https://openalex.org/W3102572323, https://openalex.org/W3102454059, https://openalex.org/W4225784782, https://openalex.org/W3099462237 |
| referenced_works_count | 52 |
| abstract_inverted_index.A | 1, 25 |
| abstract_inverted_index.a | 19, 152, 189 |
| abstract_inverted_index.1) | 132 |
| abstract_inverted_index.2) | 143 |
| abstract_inverted_index.3) | 151 |
| abstract_inverted_index.As | 54 |
| abstract_inverted_index.In | 166, 185 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 120, 130 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 4, 12, 43, 95, 116, 139, 181, 205 |
| abstract_inverted_index.or | 161 |
| abstract_inverted_index.to | 8, 47, 195 |
| abstract_inverted_index.we | 61, 169 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.and | 98, 150, 157, 179, 198 |
| abstract_inverted_index.are | 57, 99 |
| abstract_inverted_index.but | 86 |
| abstract_inverted_index.can | 66, 173 |
| abstract_inverted_index.for | 28, 103, 112, 146, 155, 192 |
| abstract_inverted_index.how | 10, 49, 171 |
| abstract_inverted_index.not | 58 |
| abstract_inverted_index.the | 36, 40, 107, 114, 117, 176, 203 |
| abstract_inverted_index.– | 35, 46 |
| abstract_inverted_index.CtDB | 172, 187 |
| abstract_inverted_index.from | 70 |
| abstract_inverted_index.gaps | 129 |
| abstract_inverted_index.goal | 3 |
| abstract_inverted_index.help | 174 |
| abstract_inverted_index.into | 16 |
| abstract_inverted_index.lens | 204 |
| abstract_inverted_index.need | 62 |
| abstract_inverted_index.poor | 101 |
| abstract_inverted_index.such | 77 |
| abstract_inverted_index.that | 38, 65, 135 |
| abstract_inverted_index.this | 167 |
| abstract_inverted_index.thus | 100 |
| abstract_inverted_index.uses | 32 |
| abstract_inverted_index.with | 82, 160 |
| abstract_inverted_index.field | 108 |
| abstract_inverted_index.fills | 126 |
| abstract_inverted_index.guide | 175 |
| abstract_inverted_index.infer | 67 |
| abstract_inverted_index.known | 21, 83, 163 |
| abstract_inverted_index.lacks | 109 |
| abstract_inverted_index.model | 148, 193 |
| abstract_inverted_index.rules | 37, 56 |
| abstract_inverted_index.these | 127 |
| abstract_inverted_index.using | 79 |
| abstract_inverted_index.(CtDB) | 125 |
| abstract_inverted_index.better | 196 |
| abstract_inverted_index.inputs | 15 |
| abstract_inverted_index.models | 64, 78, 159 |
| abstract_inverted_index.neural | 23, 30, 33, 44, 68, 72, 96, 104, 141, 182, 200 |
| abstract_inverted_index.occur. | 53 |
| abstract_inverted_index.don’t | 91 |
| abstract_inverted_index.explain | 48 |
| abstract_inverted_index.inputs. | 165 |
| abstract_inverted_index.metrics | 111, 145 |
| abstract_inverted_index.models. | 121, 184 |
| abstract_inverted_index.neurons | 13 |
| abstract_inverted_index.primary | 2 |
| abstract_inverted_index.process | 20 |
| abstract_inverted_index.proxies | 102 |
| abstract_inverted_index.reflect | 92, 136 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.through | 202 |
| abstract_inverted_index.tuning, | 178 |
| abstract_inverted_index.without | 162 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Further, | 106 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.activity | 45 |
| abstract_inverted_index.critical | 128, 190 |
| abstract_inverted_index.datasets | 81, 90, 134 |
| abstract_inverted_index.describe | 39 |
| abstract_inverted_index.directly | 59 |
| abstract_inverted_index.discover | 9 |
| abstract_inverted_index.dynamics | 34, 69, 118, 183 |
| abstract_inverted_index.existing | 88 |
| abstract_inverted_index.external | 164 |
| abstract_inverted_index.features | 94 |
| abstract_inverted_index.inferred | 119 |
| abstract_inverted_index.pipeline | 154 |
| abstract_inverted_index.platform | 191 |
| abstract_inverted_index.powerful | 26 |
| abstract_inverted_index.provides | 188 |
| abstract_inverted_index.recorded | 71 |
| abstract_inverted_index.summary, | 186 |
| abstract_inverted_index.systems. | 105 |
| abstract_inverted_index.temporal | 41 |
| abstract_inverted_index.training | 156 |
| abstract_inverted_index.validate | 76 |
| abstract_inverted_index.Benchmark | 124 |
| abstract_inverted_index.activity. | 73 |
| abstract_inverted_index.behavior, | 18 |
| abstract_inverted_index.circuits, | 142 |
| abstract_inverted_index.dynamical | 55 |
| abstract_inverted_index.dynamics, | 85 |
| abstract_inverted_index.dynamics. | 206 |
| abstract_inverted_index.ensembles | 11 |
| abstract_inverted_index.evolution | 42 |
| abstract_inverted_index.framework | 27 |
| abstract_inverted_index.synthetic | 80, 89, 133 |
| abstract_inverted_index.transform | 14 |
| abstract_inverted_index.typically | 75 |
| abstract_inverted_index.validated | 110 |
| abstract_inverted_index.biological | 140 |
| abstract_inverted_index.developers | 194 |
| abstract_inverted_index.evaluating | 158 |
| abstract_inverted_index.properties | 138 |
| abstract_inverted_index.providing: | 131 |
| abstract_inverted_index.understand | 197 |
| abstract_inverted_index.computation | 31, 97, 201 |
| abstract_inverted_index.demonstrate | 170 |
| abstract_inverted_index.fundamental | 93 |
| abstract_inverted_index.manuscript, | 168 |
| abstract_inverted_index.observable, | 60 |
| abstract_inverted_index.quantifying | 113, 147 |
| abstract_inverted_index.characterize | 199 |
| abstract_inverted_index.computation. | 24 |
| abstract_inverted_index.development, | 177 |
| abstract_inverted_index.ground-truth | 84 |
| abstract_inverted_index.input-output | 51 |
| abstract_inverted_index.neuroscience | 6 |
| abstract_inverted_index.performance, | 149 |
| abstract_inverted_index.standardized | 153 |
| abstract_inverted_index.computational | 63, 137 |
| abstract_inverted_index.goal-directed | 17, 50 |
| abstract_inverted_index.interpretable | 144 |
| abstract_inverted_index.understanding | 29 |
| abstract_inverted_index.unfortunately | 87 |
| abstract_inverted_index.transformations | 52 |
| abstract_inverted_index.troubleshooting | 180 |
| abstract_inverted_index.Computation-through-Dynamics | 123 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5008864063 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I150468666 |
| citation_normalized_percentile.value | 0.0389177 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |