Computational data on binding of a pyrene-based fluorescent amyloid ligand (Py1SA) to transthyretin (TTR) Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7961594
This repository contains the data and files for the computational study on binding of a pyrene-based fluorescent amyloid ligand (Py1SA) to transthyretin (TTR). The repository is organized into different folders as described below: ==================================================================================================== 1_Starting_structure This folder contains the starting structures of the four binding modes obtained from the crystallographic study. These structures serve as the initial configurations for the Molecular Dynamics (MD) simulations. ==================================================================================================== 2_mdp_files This folder contains two subfolders: 1_MD The "1_MD" subfolder includes the MD simulation files in the mdp format. These files define the parameters and settings for running the MD simulations with Gromacs version 2019.3. 2_US The "2_US" subfolder includes the files required for performing Umbrella Sampling (US) simulations for each of the binding modes using Gromacs version 2021.3. Within each mode folder, you will find the following files: constraint: Position restraints files used in the Umbrella Sampling simulations. pull: mdp files containing the settings for pulling in the US simulations. us: mdp files used for the US simulations. ==================================================================================================== 3_MD_results This folder contains the results of the MD simulations. It includes the structure files (.gro) and trajectory files (.xtc) for each simulation. Due to the large size of the files, the solvent has been excluded, and the results are provided at every 1 nanosecond (ns) interval. ==================================================================================================== 4_US_results The "4_US_results" folder includes the trajectories of the US simulations for each of the binding modes. For each mode, two trajectories are provided. ==================================================================================================== 5_pdb This folder includes the pdb files of the simulated structures of the two binding modes after the equilibration step. ==================================================================================================== We acknowledge funding by the German Research Foundation (DFG) through the Emmy Noether Young Group Leader Programme (CK, project KO 5423/1-1), the Swedish e-Science Research Centre (SeRC, ML, PN), the Swedish Research Council (PN, Grant No. 2018-4343). Computing resources were provided by the Swedish National Infrastructure for Computing (SNIC).
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.7961594
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393873224
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393873224Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7961594Digital Object Identifier
- Title
-
Computational data on binding of a pyrene-based fluorescent amyloid ligand (Py1SA) to transthyretin (TTR)Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-23Full publication date if available
- Authors
-
Thi Minh Nghia Nguyen, Yogesh Todarwal, Mathieu Linares, Patrick Norman, Carolin KönigList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.7961594Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.7961594Direct OA link when available
- Concepts
-
Transthyretin, Amyloid (mycology), Pyrene, Amyloid fibril, Chemistry, Computational biology, Ligand (biochemistry), Computer science, Biochemistry, Biology, Amyloid β, Medicine, Internal medicine, Endocrinology, Receptor, Organic chemistry, Inorganic chemistry, DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393873224 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7961594 |
| ids.doi | https://doi.org/10.5281/zenodo.7961594 |
| ids.openalex | https://openalex.org/W4393873224 |
| fwci | |
| type | dataset |
| title | Computational data on binding of a pyrene-based fluorescent amyloid ligand (Py1SA) to transthyretin (TTR) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11908 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9261999726295471 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Protein Interaction Studies and Fluorescence Analysis |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9226999878883362 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121157162 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9485173225402832 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q419999 |
| concepts[0].display_name | Transthyretin |
| concepts[1].id | https://openalex.org/C2777633098 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6053074598312378 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2736051 |
| concepts[1].display_name | Amyloid (mycology) |
| concepts[2].id | https://openalex.org/C2778951431 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5929872393608093 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q415723 |
| concepts[2].display_name | Pyrene |
| concepts[3].id | https://openalex.org/C2994168385 |
| concepts[3].level | 4 |
| concepts[3].score | 0.520982563495636 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6740853 |
| concepts[3].display_name | Amyloid fibril |
| concepts[4].id | https://openalex.org/C185592680 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4828946590423584 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[4].display_name | Chemistry |
| concepts[5].id | https://openalex.org/C70721500 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43688103556632996 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[5].display_name | Computational biology |
| concepts[6].id | https://openalex.org/C116569031 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4358966052532196 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q899107 |
| concepts[6].display_name | Ligand (biochemistry) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.34016358852386475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26888182759284973 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2156778872013092 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C3019447875 |
| concepts[10].level | 3 |
| concepts[10].score | 0.19712984561920166 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q417667 |
| concepts[10].display_name | Amyloid β |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1793287694454193 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12950417399406433 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C134018914 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10864889621734619 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[13].display_name | Endocrinology |
| concepts[14].id | https://openalex.org/C170493617 |
| concepts[14].level | 2 |
| concepts[14].score | 0.06346732378005981 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q208467 |
| concepts[14].display_name | Receptor |
| concepts[15].id | https://openalex.org/C178790620 |
| concepts[15].level | 1 |
| concepts[15].score | 0.06185320019721985 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[15].display_name | Organic chemistry |
| concepts[16].id | https://openalex.org/C179104552 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11165 |
| concepts[16].display_name | Inorganic chemistry |
| concepts[17].id | https://openalex.org/C2779134260 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[17].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/transthyretin |
| keywords[0].score | 0.9485173225402832 |
| keywords[0].display_name | Transthyretin |
| keywords[1].id | https://openalex.org/keywords/amyloid |
| keywords[1].score | 0.6053074598312378 |
| keywords[1].display_name | Amyloid (mycology) |
| keywords[2].id | https://openalex.org/keywords/pyrene |
| keywords[2].score | 0.5929872393608093 |
| keywords[2].display_name | Pyrene |
| keywords[3].id | https://openalex.org/keywords/amyloid-fibril |
| keywords[3].score | 0.520982563495636 |
| keywords[3].display_name | Amyloid fibril |
| keywords[4].id | https://openalex.org/keywords/chemistry |
| keywords[4].score | 0.4828946590423584 |
| keywords[4].display_name | Chemistry |
| keywords[5].id | https://openalex.org/keywords/computational-biology |
| keywords[5].score | 0.43688103556632996 |
| keywords[5].display_name | Computational biology |
| keywords[6].id | https://openalex.org/keywords/ligand |
| keywords[6].score | 0.4358966052532196 |
| keywords[6].display_name | Ligand (biochemistry) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.34016358852386475 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/biochemistry |
| keywords[8].score | 0.26888182759284973 |
| keywords[8].display_name | Biochemistry |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.2156778872013092 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/amyloid-β |
| keywords[10].score | 0.19712984561920166 |
| keywords[10].display_name | Amyloid β |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.1793287694454193 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.12950417399406433 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/endocrinology |
| keywords[13].score | 0.10864889621734619 |
| keywords[13].display_name | Endocrinology |
| keywords[14].id | https://openalex.org/keywords/receptor |
| keywords[14].score | 0.06346732378005981 |
| keywords[14].display_name | Receptor |
| keywords[15].id | https://openalex.org/keywords/organic-chemistry |
| keywords[15].score | 0.06185320019721985 |
| keywords[15].display_name | Organic chemistry |
| language | en |
| locations[0].id | doi:10.5281/zenodo.7961594 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.7961594 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5101327354 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Thi Minh Nghia Nguyen |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[0].affiliations[0].raw_affiliation_string | Leibniz University Hannover |
| authorships[0].institutions[0].id | https://openalex.org/I114112103 |
| authorships[0].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Leibniz University Hannover |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thi Minh Nghia Nguyen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Leibniz University Hannover |
| authorships[1].author.id | https://openalex.org/A5088251618 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8127-2283 |
| authorships[1].author.display_name | Yogesh Todarwal |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[1].affiliations[0].raw_affiliation_string | KTH Royal Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I86987016 |
| authorships[1].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yogesh Todarwal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | KTH Royal Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5014428406 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9720-5429 |
| authorships[2].author.display_name | Mathieu Linares |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I102134673 |
| authorships[2].affiliations[0].raw_affiliation_string | Linköping University |
| authorships[2].institutions[0].id | https://openalex.org/I102134673 |
| authorships[2].institutions[0].ror | https://ror.org/05ynxx418 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I102134673 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Linköping University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mathieu Linares |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Linköping University |
| authorships[3].author.id | https://openalex.org/A5034879764 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1191-4954 |
| authorships[3].author.display_name | Patrick Norman |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[3].affiliations[0].raw_affiliation_string | KTH Royal Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I86987016 |
| authorships[3].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Patrick Norman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | KTH Royal Institute of Technology |
| authorships[4].author.id | https://openalex.org/A5019979427 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8931-4337 |
| authorships[4].author.display_name | Carolin König |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[4].affiliations[0].raw_affiliation_string | Leibniz University Hannover |
| authorships[4].institutions[0].id | https://openalex.org/I114112103 |
| authorships[4].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Leibniz University Hannover |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Carolin König |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Leibniz University Hannover |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.7961594 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computational data on binding of a pyrene-based fluorescent amyloid ligand (Py1SA) to transthyretin (TTR) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11908 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9261999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Protein Interaction Studies and Fluorescence Analysis |
| related_works | https://openalex.org/W2026214162, https://openalex.org/W4386665141, https://openalex.org/W2611005065, https://openalex.org/W2026727765, https://openalex.org/W1982652047, https://openalex.org/W2416271639, https://openalex.org/W2084515092, https://openalex.org/W2047427804, https://openalex.org/W295199716, https://openalex.org/W2171229065 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.7961594 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.7961594 |
| primary_location.id | doi:10.5281/zenodo.7961594 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.7961594 |
| publication_date | 2023-05-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 209 |
| abstract_inverted_index.a | 14 |
| abstract_inverted_index.It | 176 |
| abstract_inverted_index.KO | 279 |
| abstract_inverted_index.MD | 78, 95, 174 |
| abstract_inverted_index.US | 155, 163, 223 |
| abstract_inverted_index.We | 260 |
| abstract_inverted_index.as | 31, 55 |
| abstract_inverted_index.at | 207 |
| abstract_inverted_index.by | 263, 301 |
| abstract_inverted_index.in | 81, 140, 153 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.of | 13, 42, 117, 172, 194, 221, 227, 246, 250 |
| abstract_inverted_index.on | 11 |
| abstract_inverted_index.to | 20, 190 |
| abstract_inverted_index.Due | 189 |
| abstract_inverted_index.For | 231 |
| abstract_inverted_index.ML, | 287 |
| abstract_inverted_index.No. | 295 |
| abstract_inverted_index.The | 24, 73, 102, 215 |
| abstract_inverted_index.and | 5, 90, 182, 202 |
| abstract_inverted_index.are | 205, 236 |
| abstract_inverted_index.for | 7, 59, 92, 109, 115, 151, 161, 186, 225, 306 |
| abstract_inverted_index.has | 199 |
| abstract_inverted_index.mdp | 83, 146, 158 |
| abstract_inverted_index.pdb | 244 |
| abstract_inverted_index.the | 3, 8, 39, 43, 49, 56, 60, 77, 82, 88, 94, 106, 118, 132, 141, 149, 154, 162, 170, 173, 178, 191, 195, 197, 203, 219, 222, 228, 243, 247, 251, 256, 264, 270, 281, 289, 302 |
| abstract_inverted_index.two | 70, 234, 252 |
| abstract_inverted_index.us: | 157 |
| abstract_inverted_index.you | 129 |
| abstract_inverted_index.(CK, | 277 |
| abstract_inverted_index.(MD) | 63 |
| abstract_inverted_index.(PN, | 293 |
| abstract_inverted_index.(US) | 113 |
| abstract_inverted_index.(ns) | 211 |
| abstract_inverted_index.<br> | 23 |
| abstract_inverted_index.Emmy | 271 |
| abstract_inverted_index.PN), | 288 |
| abstract_inverted_index.This | 0, 36, 67, 167, 240 |
| abstract_inverted_index.been | 200 |
| abstract_inverted_index.data | 4 |
| abstract_inverted_index.each | 116, 126, 187, 226, 232 |
| abstract_inverted_index.find | 131 |
| abstract_inverted_index.four | 44 |
| abstract_inverted_index.from | 48 |
| abstract_inverted_index.into | 28 |
| abstract_inverted_index.mode | 127 |
| abstract_inverted_index.size | 193 |
| abstract_inverted_index.used | 139, 160 |
| abstract_inverted_index.were | 299 |
| abstract_inverted_index.will | 130 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.(DFG) | 268 |
| abstract_inverted_index.Grant | 294 |
| abstract_inverted_index.Group | 274 |
| abstract_inverted_index.These | 52, 85 |
| abstract_inverted_index.Young | 273 |
| abstract_inverted_index.after | 255 |
| abstract_inverted_index.every | 208 |
| abstract_inverted_index.files | 6, 80, 86, 107, 138, 147, 159, 180, 184, 245 |
| abstract_inverted_index.large | 192 |
| abstract_inverted_index.mode, | 233 |
| abstract_inverted_index.modes | 46, 120, 254 |
| abstract_inverted_index.pull: | 145 |
| abstract_inverted_index.serve | 54 |
| abstract_inverted_index.step. | 258 |
| abstract_inverted_index.study | 10 |
| abstract_inverted_index.using | 121 |
| abstract_inverted_index."1_MD" | 74 |
| abstract_inverted_index."2_US" | 103 |
| abstract_inverted_index.(.gro) | 181 |
| abstract_inverted_index.(.xtc) | 185 |
| abstract_inverted_index.(SeRC, | 286 |
| abstract_inverted_index.(TTR). | 22 |
| abstract_inverted_index.Centre | 285 |
| abstract_inverted_index.German | 265 |
| abstract_inverted_index.Leader | 275 |
| abstract_inverted_index.Within | 125 |
| abstract_inverted_index.below: | 33 |
| abstract_inverted_index.define | 87 |
| abstract_inverted_index.files, | 196 |
| abstract_inverted_index.files: | 134 |
| abstract_inverted_index.folder | 37, 68, 168, 217, 241 |
| abstract_inverted_index.ligand | 18 |
| abstract_inverted_index.modes. | 230 |
| abstract_inverted_index.study. | 51 |
| abstract_inverted_index.(Py1SA) | 19 |
| abstract_inverted_index.(SNIC). | 308 |
| abstract_inverted_index.2019.3. | 100 |
| abstract_inverted_index.2021.3. | 124 |
| abstract_inverted_index.Council | 292 |
| abstract_inverted_index.Gromacs | 98, 122 |
| abstract_inverted_index.Noether | 272 |
| abstract_inverted_index.Swedish | 282, 290, 303 |
| abstract_inverted_index.amyloid | 17 |
| abstract_inverted_index.binding | 12, 45, 119, 229, 253 |
| abstract_inverted_index.folder, | 128 |
| abstract_inverted_index.folders | 30 |
| abstract_inverted_index.format. | 84 |
| abstract_inverted_index.funding | 262 |
| abstract_inverted_index.initial | 57 |
| abstract_inverted_index.project | 278 |
| abstract_inverted_index.pulling | 152 |
| abstract_inverted_index.results | 171, 204 |
| abstract_inverted_index.running | 93 |
| abstract_inverted_index.solvent | 198 |
| abstract_inverted_index.through | 269 |
| abstract_inverted_index.version | 99, 123 |
| abstract_inverted_index.1_MD<br> | 72 |
| abstract_inverted_index.2_US<br> | 101 |
| abstract_inverted_index.Dynamics | 62 |
| abstract_inverted_index.National | 304 |
| abstract_inverted_index.Position | 136 |
| abstract_inverted_index.Research | 266, 284, 291 |
| abstract_inverted_index.Sampling | 112, 143 |
| abstract_inverted_index.Umbrella | 111, 142 |
| abstract_inverted_index.contains | 2, 38, 69, 169 |
| abstract_inverted_index.includes | 76, 105, 177, 218, 242 |
| abstract_inverted_index.obtained | 47 |
| abstract_inverted_index.provided | 206, 300 |
| abstract_inverted_index.required | 108 |
| abstract_inverted_index.settings | 91, 150 |
| abstract_inverted_index.starting | 40 |
| abstract_inverted_index.5_pdb<br> | 239 |
| abstract_inverted_index.Computing | 297, 307 |
| abstract_inverted_index.Molecular | 61 |
| abstract_inverted_index.Programme | 276 |
| abstract_inverted_index.described | 32 |
| abstract_inverted_index.different | 29 |
| abstract_inverted_index.e-Science | 283 |
| abstract_inverted_index.excluded, | 201 |
| abstract_inverted_index.following | 133 |
| abstract_inverted_index.interval. | 212 |
| abstract_inverted_index.organized | 27 |
| abstract_inverted_index.provided. | 237 |
| abstract_inverted_index.resources | 298 |
| abstract_inverted_index.simulated | 248 |
| abstract_inverted_index.structure | 179 |
| abstract_inverted_index.subfolder | 75, 104 |
| abstract_inverted_index.5423/1-1), | 280 |
| abstract_inverted_index.Foundation | 267 |
| abstract_inverted_index.containing | 148 |
| abstract_inverted_index.nanosecond | 210 |
| abstract_inverted_index.parameters | 89 |
| abstract_inverted_index.performing | 110 |
| abstract_inverted_index.repository | 1, 25 |
| abstract_inverted_index.restraints | 137 |
| abstract_inverted_index.simulation | 79 |
| abstract_inverted_index.structures | 41, 53, 249 |
| abstract_inverted_index.trajectory | 183 |
| abstract_inverted_index.2018-4343). | 296 |
| abstract_inverted_index.acknowledge | 261 |
| abstract_inverted_index.constraint: | 135 |
| abstract_inverted_index.fluorescent | 16 |
| abstract_inverted_index.simulation. | 188 |
| abstract_inverted_index.simulations | 96, 114, 224 |
| abstract_inverted_index.subfolders: | 71 |
| abstract_inverted_index.pyrene-based | 15 |
| abstract_inverted_index.simulations. | 64, 164, 175 |
| abstract_inverted_index.trajectories | 220, 235 |
| abstract_inverted_index.computational | 9 |
| abstract_inverted_index.equilibration | 257 |
| abstract_inverted_index.transthyretin | 21 |
| abstract_inverted_index."4_US_results" | 216 |
| abstract_inverted_index.Infrastructure | 305 |
| abstract_inverted_index.configurations | 58 |
| abstract_inverted_index.2_mdp_files<br> | 66 |
| abstract_inverted_index.3_MD_results<br> | 166 |
| abstract_inverted_index.4_US_results<br> | 214 |
| abstract_inverted_index.crystallographic | 50 |
| abstract_inverted_index.simulations.<br> | 144, 156 |
| abstract_inverted_index.1_Starting_structure<br> | 35 |
| abstract_inverted_index.==================================================================================================== | 259 |
| abstract_inverted_index.====================================================================================================<br> | 34, 65, 165, 213, 238 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |