COMPUTATIONAL EVALUATION OF PERSONS’ TORSO AND WAIST SIZE USING POSENET NEURAL NETWORK Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.26480/etit.02.2020.117.120
There is one thing that everyone likes to do and that is shopping, purchasing appliances, attire, accessories, and many more.But the process of shopping from malls requires a lot of time for the consumer.Especially shopping for the wardrobe, the customer starts with selecting dresses and then try it after this he/she evaluates the perfect size for him/her and eventually again try that piece of an outfit.This whole process consumes a huge amount of time of the customer and cumulatively somehow abate the sales of the stores.This paper illustrates a Computer Vision model which can ease the shopping experience and can raise the business of the clothing stores and malls.The model uses an elementary approach to appraising the body sizes of the customers.The model firstly detects the coordinates of the person who comes in front of the camera and then using those coordinates our proposed algorithm determines the torso and waist size of that person.[4] These reported sizes also suggest the customer proceed to the fitting area of attire.The main goal of this model is to lessen the time a customer spends in the shopping mall and upsurge the sales of the stores.Besides this application, there are several other areas where we can use this model.Like tracking the human movement, estimating the structure of the human body in darkness, and many more.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26480/etit.02.2020.117.120
- https://doi.org/10.26480/etit.02.2020.117.120
- OA Status
- bronze
- Cited By
- 1
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3113192060
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3113192060Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26480/etit.02.2020.117.120Digital Object Identifier
- Title
-
COMPUTATIONAL EVALUATION OF PERSONS’ TORSO AND WAIST SIZE USING POSENET NEURAL NETWORKWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Ashutosh Joshi, Anshul Singh, Arham Ali, Ruchi PatelList of authors in order
- Landing page
-
https://doi.org/10.26480/etit.02.2020.117.120Publisher landing page
- PDF URL
-
https://doi.org/10.26480/etit.02.2020.117.120Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26480/etit.02.2020.117.120Direct OA link when available
- Concepts
-
Torso, Computer science, Clothing, Shopping mall, Process (computing), Purchasing, Human–computer interaction, Artificial intelligence, Advertising, Marketing, Business, Archaeology, History, Anatomy, Medicine, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3113192060 |
|---|---|
| doi | https://doi.org/10.26480/etit.02.2020.117.120 |
| ids.doi | https://doi.org/10.26480/etit.02.2020.117.120 |
| ids.mag | 3113192060 |
| ids.openalex | https://openalex.org/W3113192060 |
| fwci | |
| type | article |
| title | COMPUTATIONAL EVALUATION OF PERSONS’ TORSO AND WAIST SIZE USING POSENET NEURAL NETWORK |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 120 |
| biblio.first_page | 117 |
| is_xpac | False |
| apc_list.value | 2290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C523889960 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8689930438995361 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160695 |
| concepts[0].display_name | Torso |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7167434096336365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C530175646 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7023560404777527 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11460 |
| concepts[2].display_name | Clothing |
| concepts[3].id | https://openalex.org/C2776678367 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5909512042999268 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q31374404 |
| concepts[3].display_name | Shopping mall |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.586592435836792 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C2778813691 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5638658404350281 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1369832 |
| concepts[5].display_name | Purchasing |
| concepts[6].id | https://openalex.org/C107457646 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39014381170272827 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[6].display_name | Human–computer interaction |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36315491795539856 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C112698675 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3244214355945587 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37038 |
| concepts[8].display_name | Advertising |
| concepts[9].id | https://openalex.org/C162853370 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21053147315979004 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[9].display_name | Marketing |
| concepts[10].id | https://openalex.org/C144133560 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13590699434280396 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[10].display_name | Business |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C95457728 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[12].display_name | History |
| concepts[13].id | https://openalex.org/C105702510 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[13].display_name | Anatomy |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/torso |
| keywords[0].score | 0.8689930438995361 |
| keywords[0].display_name | Torso |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7167434096336365 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/clothing |
| keywords[2].score | 0.7023560404777527 |
| keywords[2].display_name | Clothing |
| keywords[3].id | https://openalex.org/keywords/shopping-mall |
| keywords[3].score | 0.5909512042999268 |
| keywords[3].display_name | Shopping mall |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.586592435836792 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/purchasing |
| keywords[5].score | 0.5638658404350281 |
| keywords[5].display_name | Purchasing |
| keywords[6].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[6].score | 0.39014381170272827 |
| keywords[6].display_name | Human–computer interaction |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.36315491795539856 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/advertising |
| keywords[8].score | 0.3244214355945587 |
| keywords[8].display_name | Advertising |
| keywords[9].id | https://openalex.org/keywords/marketing |
| keywords[9].score | 0.21053147315979004 |
| keywords[9].display_name | Marketing |
| keywords[10].id | https://openalex.org/keywords/business |
| keywords[10].score | 0.13590699434280396 |
| keywords[10].display_name | Business |
| language | en |
| locations[0].id | doi:10.26480/etit.02.2020.117.120 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S13096939 |
| locations[0].source.issn | 1388-1957, 1572-8439 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1388-1957 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Ethics and Information Technology |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ETHICS AND INFORMATION TECHNOLOGY |
| locations[0].landing_page_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052518603 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8785-1259 |
| authorships[0].author.display_name | Ashutosh Joshi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[0].affiliations[0].raw_affiliation_string | Medi-Caps University, Indore |
| authorships[0].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[0].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Medi-Caps University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ashutosh Joshi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Medi-Caps University, Indore |
| authorships[1].author.id | https://openalex.org/A5049984600 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6409-3598 |
| authorships[1].author.display_name | Anshul Singh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[1].affiliations[0].raw_affiliation_string | Medi-Caps University, Indore |
| authorships[1].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[1].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Medi-Caps University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anshul Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Medi-Caps University, Indore |
| authorships[2].author.id | https://openalex.org/A5007838350 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Arham Ali |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[2].affiliations[0].raw_affiliation_string | Medi-Caps University, Indore |
| authorships[2].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[2].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Medi-Caps University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arham Ali |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Medi-Caps University, Indore |
| authorships[3].author.id | https://openalex.org/A5048238027 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ruchi Patel |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[3].affiliations[0].raw_affiliation_string | Medi-Caps University, Indore |
| authorships[3].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[3].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Medi-Caps University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ruchi Patel |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Medi-Caps University, Indore |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | COMPUTATIONAL EVALUATION OF PERSONS’ TORSO AND WAIST SIZE USING POSENET NEURAL NETWORK |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| related_works | https://openalex.org/W4381953457, https://openalex.org/W2037557144, https://openalex.org/W2285739514, https://openalex.org/W2058088690, https://openalex.org/W2086597735, https://openalex.org/W2052143774, https://openalex.org/W1984495143, https://openalex.org/W4308297792, https://openalex.org/W2158185825, https://openalex.org/W1606408717 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26480/etit.02.2020.117.120 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S13096939 |
| best_oa_location.source.issn | 1388-1957, 1572-8439 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1388-1957 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Ethics and Information Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ETHICS AND INFORMATION TECHNOLOGY |
| best_oa_location.landing_page_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| primary_location.id | doi:10.26480/etit.02.2020.117.120 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S13096939 |
| primary_location.source.issn | 1388-1957, 1572-8439 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1388-1957 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Ethics and Information Technology |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ETHICS AND INFORMATION TECHNOLOGY |
| primary_location.landing_page_url | https://doi.org/10.26480/etit.02.2020.117.120 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3004247858, https://openalex.org/W2200124539, https://openalex.org/W2789243003, https://openalex.org/W2555182955, https://openalex.org/W2789282607, https://openalex.org/W6768297980, https://openalex.org/W1994529670, https://openalex.org/W2796453247, https://openalex.org/W2982569123, https://openalex.org/W3006739980, https://openalex.org/W2962773068, https://openalex.org/W2143478373, https://openalex.org/W2964186374 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 27, 69, 88, 178 |
| abstract_inverted_index.an | 64, 111 |
| abstract_inverted_index.do | 8 |
| abstract_inverted_index.in | 132, 181, 216 |
| abstract_inverted_index.is | 1, 11, 173 |
| abstract_inverted_index.it | 47 |
| abstract_inverted_index.of | 22, 29, 63, 72, 74, 83, 103, 119, 127, 134, 151, 166, 170, 189, 212 |
| abstract_inverted_index.to | 7, 114, 162, 174 |
| abstract_inverted_index.we | 200 |
| abstract_inverted_index.and | 9, 17, 44, 57, 77, 98, 107, 137, 148, 185, 218 |
| abstract_inverted_index.are | 195 |
| abstract_inverted_index.can | 93, 99, 201 |
| abstract_inverted_index.for | 31, 35, 55 |
| abstract_inverted_index.lot | 28 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.our | 142 |
| abstract_inverted_index.the | 20, 32, 36, 38, 52, 75, 81, 84, 95, 101, 104, 116, 120, 125, 128, 135, 146, 159, 163, 176, 182, 187, 190, 206, 210, 213 |
| abstract_inverted_index.try | 46, 60 |
| abstract_inverted_index.use | 202 |
| abstract_inverted_index.who | 130 |
| abstract_inverted_index.also | 157 |
| abstract_inverted_index.area | 165 |
| abstract_inverted_index.body | 117, 215 |
| abstract_inverted_index.ease | 94 |
| abstract_inverted_index.from | 24 |
| abstract_inverted_index.goal | 169 |
| abstract_inverted_index.huge | 70 |
| abstract_inverted_index.main | 168 |
| abstract_inverted_index.mall | 184 |
| abstract_inverted_index.many | 18, 219 |
| abstract_inverted_index.size | 54, 150 |
| abstract_inverted_index.that | 4, 10, 61, 152 |
| abstract_inverted_index.then | 45, 138 |
| abstract_inverted_index.this | 49, 171, 192, 203 |
| abstract_inverted_index.time | 30, 73, 177 |
| abstract_inverted_index.uses | 110 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.These | 154 |
| abstract_inverted_index.abate | 80 |
| abstract_inverted_index.after | 48 |
| abstract_inverted_index.again | 59 |
| abstract_inverted_index.areas | 198 |
| abstract_inverted_index.comes | 131 |
| abstract_inverted_index.front | 133 |
| abstract_inverted_index.human | 207, 214 |
| abstract_inverted_index.likes | 6 |
| abstract_inverted_index.malls | 25 |
| abstract_inverted_index.model | 91, 109, 122, 172 |
| abstract_inverted_index.more. | 220 |
| abstract_inverted_index.other | 197 |
| abstract_inverted_index.paper | 86 |
| abstract_inverted_index.piece | 62 |
| abstract_inverted_index.raise | 100 |
| abstract_inverted_index.sales | 82, 188 |
| abstract_inverted_index.sizes | 118, 156 |
| abstract_inverted_index.there | 194 |
| abstract_inverted_index.thing | 3 |
| abstract_inverted_index.those | 140 |
| abstract_inverted_index.torso | 147 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.waist | 149 |
| abstract_inverted_index.where | 199 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.whole | 66 |
| abstract_inverted_index.Vision | 90 |
| abstract_inverted_index.amount | 71 |
| abstract_inverted_index.camera | 136 |
| abstract_inverted_index.he/she | 50 |
| abstract_inverted_index.lessen | 175 |
| abstract_inverted_index.person | 129 |
| abstract_inverted_index.spends | 180 |
| abstract_inverted_index.starts | 40 |
| abstract_inverted_index.stores | 106 |
| abstract_inverted_index.attire, | 15 |
| abstract_inverted_index.detects | 124 |
| abstract_inverted_index.dresses | 43 |
| abstract_inverted_index.firstly | 123 |
| abstract_inverted_index.fitting | 164 |
| abstract_inverted_index.him/her | 56 |
| abstract_inverted_index.perfect | 53 |
| abstract_inverted_index.proceed | 161 |
| abstract_inverted_index.process | 21, 67 |
| abstract_inverted_index.several | 196 |
| abstract_inverted_index.somehow | 79 |
| abstract_inverted_index.suggest | 158 |
| abstract_inverted_index.upsurge | 186 |
| abstract_inverted_index.Computer | 89 |
| abstract_inverted_index.approach | 113 |
| abstract_inverted_index.business | 102 |
| abstract_inverted_index.clothing | 105 |
| abstract_inverted_index.consumes | 68 |
| abstract_inverted_index.customer | 39, 76, 160, 179 |
| abstract_inverted_index.everyone | 5 |
| abstract_inverted_index.more.But | 19 |
| abstract_inverted_index.proposed | 143 |
| abstract_inverted_index.reported | 155 |
| abstract_inverted_index.requires | 26 |
| abstract_inverted_index.shopping | 23, 34, 96, 183 |
| abstract_inverted_index.tracking | 205 |
| abstract_inverted_index.algorithm | 144 |
| abstract_inverted_index.darkness, | 217 |
| abstract_inverted_index.evaluates | 51 |
| abstract_inverted_index.malls.The | 108 |
| abstract_inverted_index.movement, | 208 |
| abstract_inverted_index.selecting | 42 |
| abstract_inverted_index.shopping, | 12 |
| abstract_inverted_index.structure | 211 |
| abstract_inverted_index.wardrobe, | 37 |
| abstract_inverted_index.appraising | 115 |
| abstract_inverted_index.attire.The | 167 |
| abstract_inverted_index.determines | 145 |
| abstract_inverted_index.elementary | 112 |
| abstract_inverted_index.estimating | 209 |
| abstract_inverted_index.eventually | 58 |
| abstract_inverted_index.experience | 97 |
| abstract_inverted_index.model.Like | 204 |
| abstract_inverted_index.person.[4] | 153 |
| abstract_inverted_index.purchasing | 13 |
| abstract_inverted_index.appliances, | 14 |
| abstract_inverted_index.coordinates | 126, 141 |
| abstract_inverted_index.illustrates | 87 |
| abstract_inverted_index.outfit.This | 65 |
| abstract_inverted_index.stores.This | 85 |
| abstract_inverted_index.accessories, | 16 |
| abstract_inverted_index.application, | 193 |
| abstract_inverted_index.cumulatively | 78 |
| abstract_inverted_index.customers.The | 121 |
| abstract_inverted_index.stores.Besides | 191 |
| abstract_inverted_index.consumer.Especially | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile |