Computational fluid dynamic and machine learning modeling of nanofluid flow for determination of temperature distribution and models comparison Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-03187-1
This paper introduces an approach to temperature prediction by employing three distinct machine learning models: K-Nearest Neighbors (KNN), Gaussian Process Regression (GPR), and Multi-layer Perceptron (MLP) which are integrated into Computational Fluid Dynamics (CFD). The dataset consists of inputs, represented by the features x and y, and the corresponding output, which is the temperature. The case study is fluid flow of nanofluid through a pipe and the nanofluid contains CuO particles. To enhance model efficacy, the Political Optimizer (PO) algorithm was utilized for fine-tuning purposes. The findings substantiate the capability of the optimized frameworks in delivering precise temperature estimations. GPR yielded a notable R2 value of 0.998, reflecting a strong concordance between the estimated and actual measurements. In a comparable manner, the KNN approach exhibited outstanding predictive performance, also attaining an R2 value of 0.998. MLP, although slightly lower in performance compared to the other models, still proves to be a reliable predictor of temperature values, with an R-squared score of 0.984. Overall, the combination of the PO algorithm and the machine learning models showcases promising results in temperature prediction. The study's findings offer valuable insights for decision-making processes in a variety of domains that rely on accurate temperature forecasting.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-03187-1
- https://www.nature.com/articles/s41598-025-03187-1.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410889988
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410889988Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-03187-1Digital Object Identifier
- Title
-
Computational fluid dynamic and machine learning modeling of nanofluid flow for determination of temperature distribution and models comparisonWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Farag M. A. Altalbawy, Ahmad Alkhayyat, Ramdevsinh Jhala, Anupam Yadav, Thiagarajan Ramachandran, Aman Shankhyan, A. Karthikeyan, Dhirendra Nath Thatoi, Vladimir Vladimirovich SinitsinList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-03187-1Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-03187-1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-03187-1.pdfDirect OA link when available
- Concepts
-
Nanofluid, Computational fluid dynamics, Computer science, Fluid dynamics, Flow (mathematics), Distribution (mathematics), Mechanics, Materials science, Nanotechnology, Mathematics, Nanoparticle, Physics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410889988 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-03187-1 |
| ids.doi | https://doi.org/10.1038/s41598-025-03187-1 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40447660 |
| ids.openalex | https://openalex.org/W4410889988 |
| fwci | 2.76129652 |
| type | article |
| title | Computational fluid dynamic and machine learning modeling of nanofluid flow for determination of temperature distribution and models comparison |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 19073 |
| biblio.first_page | 19073 |
| topics[0].id | https://openalex.org/T12537 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9728999733924866 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Flow Measurement and Analysis |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9571999907493591 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T14189 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9555000066757202 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Intravenous Infusion Technology and Safety |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C21946209 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9333113431930542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1989679 |
| concepts[0].display_name | Nanofluid |
| concepts[1].id | https://openalex.org/C1633027 |
| concepts[1].level | 2 |
| concepts[1].score | 0.595879077911377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[1].display_name | Computational fluid dynamics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5265817046165466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C90278072 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5097526907920837 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q216320 |
| concepts[3].display_name | Fluid dynamics |
| concepts[4].id | https://openalex.org/C38349280 |
| concepts[4].level | 2 |
| concepts[4].score | 0.505563497543335 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[4].display_name | Flow (mathematics) |
| concepts[5].id | https://openalex.org/C110121322 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41587546467781067 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[5].display_name | Distribution (mathematics) |
| concepts[6].id | https://openalex.org/C57879066 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4152635335922241 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[6].display_name | Mechanics |
| concepts[7].id | https://openalex.org/C192562407 |
| concepts[7].level | 0 |
| concepts[7].score | 0.33890801668167114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[7].display_name | Materials science |
| concepts[8].id | https://openalex.org/C171250308 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20104897022247314 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[8].display_name | Nanotechnology |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16320353746414185 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C155672457 |
| concepts[10].level | 2 |
| concepts[10].score | 0.13796603679656982 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q61231 |
| concepts[10].display_name | Nanoparticle |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12403279542922974 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/nanofluid |
| keywords[0].score | 0.9333113431930542 |
| keywords[0].display_name | Nanofluid |
| keywords[1].id | https://openalex.org/keywords/computational-fluid-dynamics |
| keywords[1].score | 0.595879077911377 |
| keywords[1].display_name | Computational fluid dynamics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5265817046165466 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/fluid-dynamics |
| keywords[3].score | 0.5097526907920837 |
| keywords[3].display_name | Fluid dynamics |
| keywords[4].id | https://openalex.org/keywords/flow |
| keywords[4].score | 0.505563497543335 |
| keywords[4].display_name | Flow (mathematics) |
| keywords[5].id | https://openalex.org/keywords/distribution |
| keywords[5].score | 0.41587546467781067 |
| keywords[5].display_name | Distribution (mathematics) |
| keywords[6].id | https://openalex.org/keywords/mechanics |
| keywords[6].score | 0.4152635335922241 |
| keywords[6].display_name | Mechanics |
| keywords[7].id | https://openalex.org/keywords/materials-science |
| keywords[7].score | 0.33890801668167114 |
| keywords[7].display_name | Materials science |
| keywords[8].id | https://openalex.org/keywords/nanotechnology |
| keywords[8].score | 0.20104897022247314 |
| keywords[8].display_name | Nanotechnology |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16320353746414185 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/nanoparticle |
| keywords[10].score | 0.13796603679656982 |
| keywords[10].display_name | Nanoparticle |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.12403279542922974 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-03187-1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-03187-1.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-03187-1 |
| locations[1].id | pmid:40447660 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40447660 |
| locations[2].id | pmh:oai:doaj.org/article:58f1fc6119a2495b99435f235c5a917e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-9 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/58f1fc6119a2495b99435f235c5a917e |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12125320 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12125320 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5114525539 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Farag M. A. Altalbawy |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72264486 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I72264486 |
| authorships[0].institutions[0].ror | https://ror.org/04yej8x59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I72264486 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | University of Tabuk |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farag M A Altalbawy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5115758276 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ahmad Alkhayyat |
| authorships[1].countries | IQ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3131779051 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I166455938, https://openalex.org/I3131779051 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq. |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I3131779051 |
| authorships[1].affiliations[2].raw_affiliation_string | Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq. |
| authorships[1].institutions[0].id | https://openalex.org/I3131779051 |
| authorships[1].institutions[0].ror | https://ror.org/01wfhkb67 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3131779051 |
| authorships[1].institutions[0].country_code | IQ |
| authorships[1].institutions[0].display_name | Iraqi University |
| authorships[1].institutions[1].id | https://openalex.org/I166455938 |
| authorships[1].institutions[1].ror | https://ror.org/0170edc15 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I166455938 |
| authorships[1].institutions[1].country_code | IQ |
| authorships[1].institutions[1].display_name | University of Babylon |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahmad Alkhayyat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq., Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq., Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq. |
| authorships[2].author.id | https://openalex.org/A5069702620 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ramdevsinh Jhala |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3132999081 |
| authorships[2].affiliations[0].raw_affiliation_string | Marwadi University Research Center, Department of Mechanical Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat, 360003, India. |
| authorships[2].institutions[0].id | https://openalex.org/I3132999081 |
| authorships[2].institutions[0].ror | https://ror.org/030dn1812 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3132999081 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Marwadi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ramdevsinh Jhala |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Marwadi University Research Center, Department of Mechanical Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat, 360003, India. |
| authorships[3].author.id | https://openalex.org/A5005025571 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9179-3151 |
| authorships[3].author.display_name | Anupam Yadav |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82571370 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Engineering and Application, GLA University, Mathura, 281406, India. |
| authorships[3].institutions[0].id | https://openalex.org/I82571370 |
| authorships[3].institutions[0].ror | https://ror.org/05fnxgv12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82571370 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | GLA University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anupam Yadav |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Engineering and Application, GLA University, Mathura, 281406, India. |
| authorships[4].author.id | https://openalex.org/A5025104343 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-9259-7243 |
| authorships[4].author.display_name | Thiagarajan Ramachandran |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I106826634 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India. |
| authorships[4].institutions[0].id | https://openalex.org/I106826634 |
| authorships[4].institutions[0].ror | https://ror.org/01cnqpt53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I106826634 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Jain University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | T Ramachandran |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India. |
| authorships[5].author.id | https://openalex.org/A5115446924 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Aman Shankhyan |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[5].affiliations[0].raw_affiliation_string | Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India. |
| authorships[5].institutions[0].id | https://openalex.org/I74319210 |
| authorships[5].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Chitkara University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Aman Shankhyan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India. |
| authorships[6].author.id | https://openalex.org/A5083680900 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | A. Karthikeyan |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I43814544 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. |
| authorships[6].institutions[0].id | https://openalex.org/I43814544 |
| authorships[6].institutions[0].ror | https://ror.org/01defpn95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I43814544 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Sathyabama Institute of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | A Karthikeyan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. |
| authorships[7].author.id | https://openalex.org/A5110563924 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2633-4805 |
| authorships[7].author.display_name | Dhirendra Nath Thatoi |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India. |
| authorships[7].institutions[0].id | https://openalex.org/I193073490 |
| authorships[7].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dhirendra Nath Thatoi |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India. |
| authorships[8].author.id | https://openalex.org/A5048715752 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6049-9830 |
| authorships[8].author.display_name | Vladimir Vladimirovich Sinitsin |
| authorships[8].countries | RU |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I107640659 |
| authorships[8].affiliations[0].raw_affiliation_string | Research Laboratory of Technical Self-Diagnostics and Self-Control of Devices and Systems, Department of Scientific and Innovative Activities, Research Institute of Mechanical Engineering, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation. |
| authorships[8].institutions[0].id | https://openalex.org/I107640659 |
| authorships[8].institutions[0].ror | https://ror.org/03sfk2504 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I107640659 |
| authorships[8].institutions[0].country_code | RU |
| authorships[8].institutions[0].display_name | South Ural State University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Vladimir Vladimirovich Sinitsin |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Research Laboratory of Technical Self-Diagnostics and Self-Control of Devices and Systems, Department of Scientific and Innovative Activities, Research Institute of Mechanical Engineering, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-03187-1.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computational fluid dynamic and machine learning modeling of nanofluid flow for determination of temperature distribution and models comparison |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12537 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9728999733924866 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Flow Measurement and Analysis |
| related_works | https://openalex.org/W3006027083, https://openalex.org/W2352639646, https://openalex.org/W2809988020, https://openalex.org/W4253695312, https://openalex.org/W2265619912, https://openalex.org/W2360943024, https://openalex.org/W2556915148, https://openalex.org/W204964826, https://openalex.org/W2146338266, https://openalex.org/W4382049485 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-03187-1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-03187-1.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-03187-1 |
| primary_location.id | doi:10.1038/s41598-025-03187-1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-03187-1.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-03187-1 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4403997536, https://openalex.org/W4405660732, https://openalex.org/W4405594671, https://openalex.org/W4292640191, https://openalex.org/W1999001841, https://openalex.org/W2966026460, https://openalex.org/W3121212622, https://openalex.org/W4406604844, https://openalex.org/W4391019835, https://openalex.org/W4251708881, https://openalex.org/W2789758093, https://openalex.org/W4388282792, https://openalex.org/W964460774, https://openalex.org/W6600137863, https://openalex.org/W2295797531, https://openalex.org/W1502922572, https://openalex.org/W1569601317, https://openalex.org/W2044523229, https://openalex.org/W2586209592, https://openalex.org/W1977177161, https://openalex.org/W2070439790, https://openalex.org/W2028117040, https://openalex.org/W2979581430, https://openalex.org/W3012087746, https://openalex.org/W3110022130, https://openalex.org/W3195795164 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 63, 101, 108, 118, 150, 190 |
| abstract_inverted_index.x | 43 |
| abstract_inverted_index.In | 117 |
| abstract_inverted_index.PO | 167 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.an | 3, 130, 157 |
| abstract_inverted_index.be | 149 |
| abstract_inverted_index.by | 8, 40 |
| abstract_inverted_index.in | 94, 139, 177, 189 |
| abstract_inverted_index.is | 51, 57 |
| abstract_inverted_index.of | 37, 60, 90, 105, 133, 153, 160, 165, 192 |
| abstract_inverted_index.on | 196 |
| abstract_inverted_index.to | 5, 142, 148 |
| abstract_inverted_index.y, | 45 |
| abstract_inverted_index.CuO | 69 |
| abstract_inverted_index.GPR | 99 |
| abstract_inverted_index.KNN | 122 |
| abstract_inverted_index.The | 34, 54, 85, 180 |
| abstract_inverted_index.and | 22, 44, 46, 65, 114, 169 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.for | 82, 186 |
| abstract_inverted_index.the | 41, 47, 52, 66, 75, 88, 91, 112, 121, 143, 163, 166, 170 |
| abstract_inverted_index.was | 80 |
| abstract_inverted_index.(PO) | 78 |
| abstract_inverted_index.MLP, | 135 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 128 |
| abstract_inverted_index.case | 55 |
| abstract_inverted_index.flow | 59 |
| abstract_inverted_index.into | 29 |
| abstract_inverted_index.pipe | 64 |
| abstract_inverted_index.rely | 195 |
| abstract_inverted_index.that | 194 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.(MLP) | 25 |
| abstract_inverted_index.Fluid | 31 |
| abstract_inverted_index.fluid | 58 |
| abstract_inverted_index.lower | 138 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.offer | 183 |
| abstract_inverted_index.other | 144 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.score | 159 |
| abstract_inverted_index.still | 146 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.three | 10 |
| abstract_inverted_index.value | 104, 132 |
| abstract_inverted_index.which | 26, 50 |
| abstract_inverted_index.(CFD). | 33 |
| abstract_inverted_index.(GPR), | 21 |
| abstract_inverted_index.(KNN), | 17 |
| abstract_inverted_index.0.984. | 161 |
| abstract_inverted_index.0.998, | 106 |
| abstract_inverted_index.0.998. | 134 |
| abstract_inverted_index.actual | 115 |
| abstract_inverted_index.models | 173 |
| abstract_inverted_index.proves | 147 |
| abstract_inverted_index.strong | 109 |
| abstract_inverted_index.Process | 19 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.dataset | 35 |
| abstract_inverted_index.domains | 193 |
| abstract_inverted_index.enhance | 72 |
| abstract_inverted_index.inputs, | 38 |
| abstract_inverted_index.machine | 12, 171 |
| abstract_inverted_index.manner, | 120 |
| abstract_inverted_index.models, | 145 |
| abstract_inverted_index.models: | 14 |
| abstract_inverted_index.notable | 102 |
| abstract_inverted_index.output, | 49 |
| abstract_inverted_index.precise | 96 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.study's | 181 |
| abstract_inverted_index.through | 62 |
| abstract_inverted_index.values, | 155 |
| abstract_inverted_index.variety | 191 |
| abstract_inverted_index.yielded | 100 |
| abstract_inverted_index.Dynamics | 32 |
| abstract_inverted_index.Gaussian | 18 |
| abstract_inverted_index.Overall, | 162 |
| abstract_inverted_index.accurate | 197 |
| abstract_inverted_index.although | 136 |
| abstract_inverted_index.approach | 4, 123 |
| abstract_inverted_index.compared | 141 |
| abstract_inverted_index.consists | 36 |
| abstract_inverted_index.contains | 68 |
| abstract_inverted_index.distinct | 11 |
| abstract_inverted_index.features | 42 |
| abstract_inverted_index.findings | 86, 182 |
| abstract_inverted_index.insights | 185 |
| abstract_inverted_index.learning | 13, 172 |
| abstract_inverted_index.reliable | 151 |
| abstract_inverted_index.slightly | 137 |
| abstract_inverted_index.utilized | 81 |
| abstract_inverted_index.valuable | 184 |
| abstract_inverted_index.K-Nearest | 15 |
| abstract_inverted_index.Neighbors | 16 |
| abstract_inverted_index.Optimizer | 77 |
| abstract_inverted_index.Political | 76 |
| abstract_inverted_index.R-squared | 158 |
| abstract_inverted_index.algorithm | 79, 168 |
| abstract_inverted_index.attaining | 129 |
| abstract_inverted_index.efficacy, | 74 |
| abstract_inverted_index.employing | 9 |
| abstract_inverted_index.estimated | 113 |
| abstract_inverted_index.exhibited | 124 |
| abstract_inverted_index.nanofluid | 61, 67 |
| abstract_inverted_index.optimized | 92 |
| abstract_inverted_index.predictor | 152 |
| abstract_inverted_index.processes | 188 |
| abstract_inverted_index.promising | 175 |
| abstract_inverted_index.purposes. | 84 |
| abstract_inverted_index.showcases | 174 |
| abstract_inverted_index.Perceptron | 24 |
| abstract_inverted_index.Regression | 20 |
| abstract_inverted_index.capability | 89 |
| abstract_inverted_index.comparable | 119 |
| abstract_inverted_index.delivering | 95 |
| abstract_inverted_index.frameworks | 93 |
| abstract_inverted_index.integrated | 28 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.particles. | 70 |
| abstract_inverted_index.prediction | 7 |
| abstract_inverted_index.predictive | 126 |
| abstract_inverted_index.reflecting | 107 |
| abstract_inverted_index.Multi-layer | 23 |
| abstract_inverted_index.combination | 164 |
| abstract_inverted_index.concordance | 110 |
| abstract_inverted_index.fine-tuning | 83 |
| abstract_inverted_index.outstanding | 125 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.prediction. | 179 |
| abstract_inverted_index.represented | 39 |
| abstract_inverted_index.temperature | 6, 97, 154, 178, 198 |
| abstract_inverted_index.estimations. | 98 |
| abstract_inverted_index.forecasting. | 199 |
| abstract_inverted_index.performance, | 127 |
| abstract_inverted_index.substantiate | 87 |
| abstract_inverted_index.temperature. | 53 |
| abstract_inverted_index.Computational | 30 |
| abstract_inverted_index.R<sup>2</sup> | 103, 131 |
| abstract_inverted_index.corresponding | 48 |
| abstract_inverted_index.measurements. | 116 |
| abstract_inverted_index.decision-making | 187 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.81018486 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |