Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.26701/ems.1492905
This paper focuses on deploying Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) to investigate key characteristics associated with Cardiovascular Diseases (CVDs), a leading cause of global mortality. CVDs encompass various heart and blood vessel disorders, including coronary artery disease, stroke and atherosclerosis, which significantly impact arteries. Risk factors such as high blood pressure and obesity contribute to atherosclerosis, which is characterized by narrowed arteries due to fatty deposits, impeding blood flow and increasing heart attack and stroke risks. To simulate blood flow behaviour and its effects on artery stenosis formation, ANSYS-based CFD and monolithic (one-way) Fluid-Structure Interaction (FSI) analyses are deployed in this work. Extensive visualization of blood flow patterns relevant to patient-specific conditions is included using the non-Newtonian (Carreau shear-thinning) bio-rheological model. These simulations start with creating a three-dimensional patient artery model, followed by applying CFD/FSI methodologies to solve the equations iteratively with realistic boundary conditions. Velocity, pressure, wall shear stress (WSS), Von mises stress and strain characteristics are all computed for multiple curvature cases and different stenotic depths. Factors such as blood viscosity, density and its non-Newtonian behaviour due to red blood cells are considered. FSI analysis extends CFD by including the interaction between blood flow and deformable (elastic) arterial walls, accounting for the arterial mechanical properties and the flow-induced pressure changes. Here we do not consider the two-way case where deformation in turn affects the flow, only the one-way (monolithic) case where the blood flow distorts the arterial wall. This approach allows for deeper insight into the interaction between rheological blood flow and elastic arterial walls which aids in highlighting high stress zones, recirculation and hemodynamic impedance of potential use in identifying rupture or plaque formation, contributing significantly to the management and prevention of CVDs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26701/ems.1492905
- OA Status
- diamond
- Cited By
- 2
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403567410
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403567410Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26701/ems.1492905Digital Object Identifier
- Title
-
Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic arteryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-19Full publication date if available
- Authors
-
S. Kuharat, M. A. Chaudhry, O. Anwar Bég, Tasveer A. BégList of authors in order
- Landing page
-
https://doi.org/10.26701/ems.1492905Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26701/ems.1492905Direct OA link when available
- Concepts
-
Fluid–structure interaction, Shear stress, Computational fluid dynamics, Blood flow, Mechanics, Newtonian fluid, Carreau fluid, Hemodynamics, Non-Newtonian fluid, Blood viscosity, Artery, Fluid dynamics, Medicine, Cardiology, Materials science, Physics, Structural engineering, Finite element method, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403567410 |
|---|---|
| doi | https://doi.org/10.26701/ems.1492905 |
| ids.doi | https://doi.org/10.26701/ems.1492905 |
| ids.openalex | https://openalex.org/W4403567410 |
| fwci | 2.49727023 |
| type | article |
| title | Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery |
| biblio.issue | 4 |
| biblio.volume | 8 |
| biblio.last_page | 256 |
| biblio.first_page | 226 |
| topics[0].id | https://openalex.org/T10193 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Coronary Interventions and Diagnostics |
| topics[1].id | https://openalex.org/T10924 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiovascular Health and Disease Prevention |
| topics[2].id | https://openalex.org/T11366 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Elasticity and Material Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779126057 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7157256603240967 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q478010 |
| concepts[0].display_name | Fluid–structure interaction |
| concepts[1].id | https://openalex.org/C21141959 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6518703103065491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q657936 |
| concepts[1].display_name | Shear stress |
| concepts[2].id | https://openalex.org/C1633027 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6469631195068359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[2].display_name | Computational fluid dynamics |
| concepts[3].id | https://openalex.org/C158846371 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5770168900489807 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1642137 |
| concepts[3].display_name | Blood flow |
| concepts[4].id | https://openalex.org/C57879066 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5489431619644165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[4].display_name | Mechanics |
| concepts[5].id | https://openalex.org/C294558 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5043221712112427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q366968 |
| concepts[5].display_name | Newtonian fluid |
| concepts[6].id | https://openalex.org/C102560166 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5012772083282471 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3258307 |
| concepts[6].display_name | Carreau fluid |
| concepts[7].id | https://openalex.org/C178853913 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47154927253723145 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1642137 |
| concepts[7].display_name | Hemodynamics |
| concepts[8].id | https://openalex.org/C84403224 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46043556928634644 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860589 |
| concepts[8].display_name | Non-Newtonian fluid |
| concepts[9].id | https://openalex.org/C2994203641 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44295746088027954 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5712543 |
| concepts[9].display_name | Blood viscosity |
| concepts[10].id | https://openalex.org/C2776820930 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4299846589565277 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9655 |
| concepts[10].display_name | Artery |
| concepts[11].id | https://openalex.org/C90278072 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41632962226867676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q216320 |
| concepts[11].display_name | Fluid dynamics |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.4106745719909668 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C164705383 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3952476978302002 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[13].display_name | Cardiology |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3827734887599945 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2131880521774292 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C66938386 |
| concepts[16].level | 1 |
| concepts[16].score | 0.19399476051330566 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[16].display_name | Structural engineering |
| concepts[17].id | https://openalex.org/C135628077 |
| concepts[17].level | 2 |
| concepts[17].score | 0.193914532661438 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[17].display_name | Finite element method |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.18449127674102783 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/fluid–structure-interaction |
| keywords[0].score | 0.7157256603240967 |
| keywords[0].display_name | Fluid–structure interaction |
| keywords[1].id | https://openalex.org/keywords/shear-stress |
| keywords[1].score | 0.6518703103065491 |
| keywords[1].display_name | Shear stress |
| keywords[2].id | https://openalex.org/keywords/computational-fluid-dynamics |
| keywords[2].score | 0.6469631195068359 |
| keywords[2].display_name | Computational fluid dynamics |
| keywords[3].id | https://openalex.org/keywords/blood-flow |
| keywords[3].score | 0.5770168900489807 |
| keywords[3].display_name | Blood flow |
| keywords[4].id | https://openalex.org/keywords/mechanics |
| keywords[4].score | 0.5489431619644165 |
| keywords[4].display_name | Mechanics |
| keywords[5].id | https://openalex.org/keywords/newtonian-fluid |
| keywords[5].score | 0.5043221712112427 |
| keywords[5].display_name | Newtonian fluid |
| keywords[6].id | https://openalex.org/keywords/carreau-fluid |
| keywords[6].score | 0.5012772083282471 |
| keywords[6].display_name | Carreau fluid |
| keywords[7].id | https://openalex.org/keywords/hemodynamics |
| keywords[7].score | 0.47154927253723145 |
| keywords[7].display_name | Hemodynamics |
| keywords[8].id | https://openalex.org/keywords/non-newtonian-fluid |
| keywords[8].score | 0.46043556928634644 |
| keywords[8].display_name | Non-Newtonian fluid |
| keywords[9].id | https://openalex.org/keywords/blood-viscosity |
| keywords[9].score | 0.44295746088027954 |
| keywords[9].display_name | Blood viscosity |
| keywords[10].id | https://openalex.org/keywords/artery |
| keywords[10].score | 0.4299846589565277 |
| keywords[10].display_name | Artery |
| keywords[11].id | https://openalex.org/keywords/fluid-dynamics |
| keywords[11].score | 0.41632962226867676 |
| keywords[11].display_name | Fluid dynamics |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.4106745719909668 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/cardiology |
| keywords[13].score | 0.3952476978302002 |
| keywords[13].display_name | Cardiology |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.3827734887599945 |
| keywords[14].display_name | Materials science |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.2131880521774292 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/structural-engineering |
| keywords[16].score | 0.19399476051330566 |
| keywords[16].display_name | Structural engineering |
| keywords[17].id | https://openalex.org/keywords/finite-element-method |
| keywords[17].score | 0.193914532661438 |
| keywords[17].display_name | Finite element method |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.18449127674102783 |
| keywords[18].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.26701/ems.1492905 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210218308 |
| locations[0].source.issn | 2587-1110 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2587-1110 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Mechanical Science |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Mechanical Science |
| locations[0].landing_page_url | https://doi.org/10.26701/ems.1492905 |
| locations[1].id | pmh:oai:dergipark.org.tr:article/1492905 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | https://dergipark.org.tr/tr/pub/ems/issue/86820/1492905 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Volume: 8, Issue: 4226-256 |
| locations[1].landing_page_url | https://dergipark.org.tr/tr/pub/ems/issue/86820/1492905 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5041931833 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-5739-9137 |
| authorships[0].author.display_name | S. Kuharat |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I54459138 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Salford |
| authorships[0].institutions[0].id | https://openalex.org/I54459138 |
| authorships[0].institutions[0].ror | https://ror.org/01tmqtf75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I54459138 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Salford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sireetorn Kuharat |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Salford |
| authorships[1].author.id | https://openalex.org/A5053742421 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7611-9356 |
| authorships[1].author.display_name | M. A. Chaudhry |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I54459138 |
| authorships[1].affiliations[0].raw_affiliation_string | Salford University |
| authorships[1].institutions[0].id | https://openalex.org/I54459138 |
| authorships[1].institutions[0].ror | https://ror.org/01tmqtf75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I54459138 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Salford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. A. Chaudhry |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Salford University |
| authorships[2].author.id | https://openalex.org/A5088174453 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5925-6711 |
| authorships[2].author.display_name | O. Anwar Bég |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I54459138 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Salford |
| authorships[2].institutions[0].id | https://openalex.org/I54459138 |
| authorships[2].institutions[0].ror | https://ror.org/01tmqtf75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I54459138 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Salford |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | O. Anwar Beg |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Salford |
| authorships[3].author.id | https://openalex.org/A5109609113 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tasveer A. Bég |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800055476 |
| authorships[3].affiliations[0].raw_affiliation_string | Engineering Mechanics Research, Israfil House, Dickenson Rd. |
| authorships[3].institutions[0].id | https://openalex.org/I2800055476 |
| authorships[3].institutions[0].ror | https://ror.org/02xfvtk67 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800055476 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mechanics' Institute |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tasveer A. Bég |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Engineering Mechanics Research, Israfil House, Dickenson Rd. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26701/ems.1492905 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10193 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Coronary Interventions and Diagnostics |
| related_works | https://openalex.org/W2885437529, https://openalex.org/W2765559130, https://openalex.org/W4205845598, https://openalex.org/W3196617634, https://openalex.org/W3091244300, https://openalex.org/W2792385300, https://openalex.org/W2334321879, https://openalex.org/W2475304806, https://openalex.org/W2287384284, https://openalex.org/W1986685229 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26701/ems.1492905 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210218308 |
| best_oa_location.source.issn | 2587-1110 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2587-1110 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | European Mechanical Science |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Mechanical Science |
| best_oa_location.landing_page_url | https://doi.org/10.26701/ems.1492905 |
| primary_location.id | doi:10.26701/ems.1492905 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210218308 |
| primary_location.source.issn | 2587-1110 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2587-1110 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Mechanical Science |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Mechanical Science |
| primary_location.landing_page_url | https://doi.org/10.26701/ems.1492905 |
| publication_date | 2024-10-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W7027199526, https://openalex.org/W4247209628, https://openalex.org/W2134688511, https://openalex.org/W2117179898, https://openalex.org/W3033586471, https://openalex.org/W2101305730, https://openalex.org/W1972991969, https://openalex.org/W3096757453, https://openalex.org/W2166006153, https://openalex.org/W2098249914, https://openalex.org/W4376874859, https://openalex.org/W1158121323, https://openalex.org/W2396171093, https://openalex.org/W3080142037, https://openalex.org/W4283325460, https://openalex.org/W1977383526, https://openalex.org/W1841937413, https://openalex.org/W4318591655, https://openalex.org/W2943956619, https://openalex.org/W2990504611, https://openalex.org/W2101571696, https://openalex.org/W3091402858, https://openalex.org/W3170963779, https://openalex.org/W3006976759, https://openalex.org/W3121524732, https://openalex.org/W3179761390, https://openalex.org/W2277398609, https://openalex.org/W2501746129, https://openalex.org/W2623635038, https://openalex.org/W2885321249, https://openalex.org/W2932496507, https://openalex.org/W2130118020, https://openalex.org/W2884712720, https://openalex.org/W4210356769, https://openalex.org/W2606313178, https://openalex.org/W3128531427, https://openalex.org/W4367692876, https://openalex.org/W2196074581, https://openalex.org/W4220932545, https://openalex.org/W124988477, https://openalex.org/W2994230705, https://openalex.org/W2576907267, https://openalex.org/W3189142939, https://openalex.org/W2974062697, https://openalex.org/W3181175260, https://openalex.org/W4308585467, https://openalex.org/W2321602417, https://openalex.org/W2295964654, https://openalex.org/W2142345742, https://openalex.org/W2963228075 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 22, 129 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.as | 50, 173 |
| abstract_inverted_index.by | 62, 135, 192 |
| abstract_inverted_index.do | 217 |
| abstract_inverted_index.in | 102, 225, 262, 274 |
| abstract_inverted_index.is | 60, 115 |
| abstract_inverted_index.of | 25, 107, 271, 287 |
| abstract_inverted_index.on | 3, 87 |
| abstract_inverted_index.or | 277 |
| abstract_inverted_index.to | 13, 57, 66, 112, 139, 182, 282 |
| abstract_inverted_index.we | 216 |
| abstract_inverted_index.CFD | 92, 191 |
| abstract_inverted_index.FSI | 188 |
| abstract_inverted_index.Von | 154 |
| abstract_inverted_index.all | 161 |
| abstract_inverted_index.and | 9, 32, 41, 54, 72, 76, 84, 93, 157, 167, 177, 199, 210, 256, 268, 285 |
| abstract_inverted_index.are | 100, 160, 186 |
| abstract_inverted_index.due | 65, 181 |
| abstract_inverted_index.for | 163, 205, 246 |
| abstract_inverted_index.its | 85, 178 |
| abstract_inverted_index.key | 15 |
| abstract_inverted_index.not | 218 |
| abstract_inverted_index.red | 183 |
| abstract_inverted_index.the | 118, 141, 194, 206, 211, 220, 228, 231, 236, 240, 250, 283 |
| abstract_inverted_index.use | 273 |
| abstract_inverted_index.CVDs | 28 |
| abstract_inverted_index.Here | 215 |
| abstract_inverted_index.Risk | 47 |
| abstract_inverted_index.This | 0, 243 |
| abstract_inverted_index.aids | 261 |
| abstract_inverted_index.case | 222, 234 |
| abstract_inverted_index.flow | 71, 82, 109, 198, 238, 255 |
| abstract_inverted_index.high | 51, 264 |
| abstract_inverted_index.into | 249 |
| abstract_inverted_index.only | 230 |
| abstract_inverted_index.such | 49, 172 |
| abstract_inverted_index.this | 103 |
| abstract_inverted_index.turn | 226 |
| abstract_inverted_index.wall | 150 |
| abstract_inverted_index.with | 18, 127, 144 |
| abstract_inverted_index.(CFD) | 8 |
| abstract_inverted_index.(FSI) | 12, 98 |
| abstract_inverted_index.CVDs. | 288 |
| abstract_inverted_index.Fluid | 6 |
| abstract_inverted_index.These | 124 |
| abstract_inverted_index.blood | 33, 52, 70, 81, 108, 174, 184, 197, 237, 254 |
| abstract_inverted_index.cases | 166 |
| abstract_inverted_index.cause | 24 |
| abstract_inverted_index.cells | 185 |
| abstract_inverted_index.fatty | 67 |
| abstract_inverted_index.flow, | 229 |
| abstract_inverted_index.heart | 31, 74 |
| abstract_inverted_index.mises | 155 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shear | 151 |
| abstract_inverted_index.solve | 140 |
| abstract_inverted_index.start | 126 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.wall. | 242 |
| abstract_inverted_index.walls | 259 |
| abstract_inverted_index.where | 223, 235 |
| abstract_inverted_index.which | 43, 59, 260 |
| abstract_inverted_index.work. | 104 |
| abstract_inverted_index.(WSS), | 153 |
| abstract_inverted_index.allows | 245 |
| abstract_inverted_index.artery | 38, 88, 132 |
| abstract_inverted_index.attack | 75 |
| abstract_inverted_index.deeper | 247 |
| abstract_inverted_index.global | 26 |
| abstract_inverted_index.impact | 45 |
| abstract_inverted_index.model, | 133 |
| abstract_inverted_index.model. | 123 |
| abstract_inverted_index.plaque | 278 |
| abstract_inverted_index.risks. | 78 |
| abstract_inverted_index.strain | 158 |
| abstract_inverted_index.stress | 152, 156, 265 |
| abstract_inverted_index.stroke | 40, 77 |
| abstract_inverted_index.vessel | 34 |
| abstract_inverted_index.walls, | 203 |
| abstract_inverted_index.zones, | 266 |
| abstract_inverted_index.(CVDs), | 21 |
| abstract_inverted_index.CFD/FSI | 137 |
| abstract_inverted_index.Factors | 171 |
| abstract_inverted_index.affects | 227 |
| abstract_inverted_index.between | 196, 252 |
| abstract_inverted_index.density | 176 |
| abstract_inverted_index.depths. | 170 |
| abstract_inverted_index.effects | 86 |
| abstract_inverted_index.elastic | 257 |
| abstract_inverted_index.extends | 190 |
| abstract_inverted_index.factors | 48 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.insight | 248 |
| abstract_inverted_index.leading | 23 |
| abstract_inverted_index.obesity | 55 |
| abstract_inverted_index.one-way | 232 |
| abstract_inverted_index.patient | 131 |
| abstract_inverted_index.rupture | 276 |
| abstract_inverted_index.two-way | 221 |
| abstract_inverted_index.various | 30 |
| abstract_inverted_index.(Carreau | 120 |
| abstract_inverted_index.Diseases | 20 |
| abstract_inverted_index.Dynamics | 7 |
| abstract_inverted_index.analyses | 99 |
| abstract_inverted_index.analysis | 189 |
| abstract_inverted_index.applying | 136 |
| abstract_inverted_index.approach | 244 |
| abstract_inverted_index.arterial | 202, 207, 241, 258 |
| abstract_inverted_index.arteries | 64 |
| abstract_inverted_index.boundary | 146 |
| abstract_inverted_index.changes. | 214 |
| abstract_inverted_index.computed | 162 |
| abstract_inverted_index.consider | 219 |
| abstract_inverted_index.coronary | 37 |
| abstract_inverted_index.creating | 128 |
| abstract_inverted_index.deployed | 101 |
| abstract_inverted_index.disease, | 39 |
| abstract_inverted_index.distorts | 239 |
| abstract_inverted_index.followed | 134 |
| abstract_inverted_index.impeding | 69 |
| abstract_inverted_index.included | 116 |
| abstract_inverted_index.multiple | 164 |
| abstract_inverted_index.narrowed | 63 |
| abstract_inverted_index.patterns | 110 |
| abstract_inverted_index.pressure | 53, 213 |
| abstract_inverted_index.relevant | 111 |
| abstract_inverted_index.simulate | 80 |
| abstract_inverted_index.stenosis | 89 |
| abstract_inverted_index.stenotic | 169 |
| abstract_inverted_index.(elastic) | 201 |
| abstract_inverted_index.(one-way) | 95 |
| abstract_inverted_index.Extensive | 105 |
| abstract_inverted_index.Velocity, | 148 |
| abstract_inverted_index.arteries. | 46 |
| abstract_inverted_index.behaviour | 83, 180 |
| abstract_inverted_index.curvature | 165 |
| abstract_inverted_index.deploying | 4 |
| abstract_inverted_index.deposits, | 68 |
| abstract_inverted_index.different | 168 |
| abstract_inverted_index.encompass | 29 |
| abstract_inverted_index.equations | 142 |
| abstract_inverted_index.impedance | 270 |
| abstract_inverted_index.including | 36, 193 |
| abstract_inverted_index.potential | 272 |
| abstract_inverted_index.pressure, | 149 |
| abstract_inverted_index.realistic | 145 |
| abstract_inverted_index.accounting | 204 |
| abstract_inverted_index.associated | 17 |
| abstract_inverted_index.conditions | 114 |
| abstract_inverted_index.contribute | 56 |
| abstract_inverted_index.deformable | 200 |
| abstract_inverted_index.disorders, | 35 |
| abstract_inverted_index.formation, | 90, 279 |
| abstract_inverted_index.increasing | 73 |
| abstract_inverted_index.management | 284 |
| abstract_inverted_index.mechanical | 208 |
| abstract_inverted_index.monolithic | 94 |
| abstract_inverted_index.mortality. | 27 |
| abstract_inverted_index.prevention | 286 |
| abstract_inverted_index.properties | 209 |
| abstract_inverted_index.viscosity, | 175 |
| abstract_inverted_index.ANSYS-based | 91 |
| abstract_inverted_index.Interaction | 11, 97 |
| abstract_inverted_index.conditions. | 147 |
| abstract_inverted_index.considered. | 187 |
| abstract_inverted_index.deformation | 224 |
| abstract_inverted_index.hemodynamic | 269 |
| abstract_inverted_index.identifying | 275 |
| abstract_inverted_index.interaction | 195, 251 |
| abstract_inverted_index.investigate | 14 |
| abstract_inverted_index.iteratively | 143 |
| abstract_inverted_index.rheological | 253 |
| abstract_inverted_index.simulations | 125 |
| abstract_inverted_index.(monolithic) | 233 |
| abstract_inverted_index.contributing | 280 |
| abstract_inverted_index.flow-induced | 212 |
| abstract_inverted_index.highlighting | 263 |
| abstract_inverted_index.Computational | 5 |
| abstract_inverted_index.characterized | 61 |
| abstract_inverted_index.methodologies | 138 |
| abstract_inverted_index.non-Newtonian | 119, 179 |
| abstract_inverted_index.recirculation | 267 |
| abstract_inverted_index.significantly | 44, 281 |
| abstract_inverted_index.visualization | 106 |
| abstract_inverted_index.Cardiovascular | 19 |
| abstract_inverted_index.Fluid-Structure | 10, 96 |
| abstract_inverted_index.bio-rheological | 122 |
| abstract_inverted_index.characteristics | 16, 159 |
| abstract_inverted_index.shear-thinning) | 121 |
| abstract_inverted_index.atherosclerosis, | 42, 58 |
| abstract_inverted_index.patient-specific | 113 |
| abstract_inverted_index.three-dimensional | 130 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.84141166 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |