Compute-Bound and Low-Bandwidth Distributed 3D Graph-SLAM Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.10222
This article describes a new approach for distributed 3D SLAM map building. The key contribution of this article is the creation of a distributed graph-SLAM map-building architecture responsive to bandwidth and computational needs of the robotic platform. Responsiveness is afforded by the integration of a 3D point cloud to plane cloud compression algorithm that approximates dense 3D point cloud using local planar patches. Compute bound platforms may restrict the computational duration of the compression algorithm and low-bandwidth platforms can restrict the size of the compression result. The backbone of the approach is an ultra-fast adaptive 3D compression algorithm that transforms swaths of 3D planar surface data into planar patches attributed with image textures. Our approach uses DVO SLAM, a leading algorithm for 3D mapping, and extends it by computationally isolating map integration tasks from local Guidance, Navigation, and Control tasks and includes an addition of a network protocol to share the compressed plane clouds. The joint effect of these contributions allows agents with 3D sensing capabilities to calculate and communicate compressed map information commensurate with their onboard computational resources and communication channel capacities. This opens SLAM mapping to new categories of robotic platforms that may have computational and memory limits that prohibit other SLAM solutions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.10222
- https://arxiv.org/pdf/2005.10222
- OA Status
- green
- Cited By
- 1
- References
- 43
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3026873907
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3026873907Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.10222Digital Object Identifier
- Title
-
Compute-Bound and Low-Bandwidth Distributed 3D Graph-SLAMWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-20Full publication date if available
- Authors
-
Jincheng Zhang, Andrew Willis, Jamie L. GodwinList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.10222Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.10222Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.10222Direct OA link when available
- Concepts
-
Point cloud, Computer science, Simultaneous localization and mapping, Planar, Bandwidth (computing), Graph, Computer vision, Artificial intelligence, Algorithm, Robot, Theoretical computer science, Mobile robot, Computer graphics (images), Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3026873907 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.10222 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.10222 |
| ids.mag | 3026873907 |
| ids.openalex | https://openalex.org/W3026873907 |
| fwci | 0.29866062 |
| type | preprint |
| title | Compute-Bound and Low-Bandwidth Distributed 3D Graph-SLAM |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T12784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Modular Robots and Swarm Intelligence |
| topics[2].id | https://openalex.org/T10586 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Robotic Path Planning Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7562319040298462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7444223165512085 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C86369673 |
| concepts[2].level | 4 |
| concepts[2].score | 0.7175556421279907 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[2].display_name | Simultaneous localization and mapping |
| concepts[3].id | https://openalex.org/C134786449 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5350056886672974 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3391255 |
| concepts[3].display_name | Planar |
| concepts[4].id | https://openalex.org/C2776257435 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5069015622138977 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[4].display_name | Bandwidth (computing) |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48157286643981934 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4231221079826355 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3727377653121948 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3248782753944397 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C90509273 |
| concepts[9].level | 2 |
| concepts[9].score | 0.27014559507369995 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[9].display_name | Robot |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21531933546066284 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C19966478 |
| concepts[11].level | 3 |
| concepts[11].score | 0.19787472486495972 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[11].display_name | Mobile robot |
| concepts[12].id | https://openalex.org/C121684516 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1663919985294342 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[12].display_name | Computer graphics (images) |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14245015382766724 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.7562319040298462 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7444223165512085 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[2].score | 0.7175556421279907 |
| keywords[2].display_name | Simultaneous localization and mapping |
| keywords[3].id | https://openalex.org/keywords/planar |
| keywords[3].score | 0.5350056886672974 |
| keywords[3].display_name | Planar |
| keywords[4].id | https://openalex.org/keywords/bandwidth |
| keywords[4].score | 0.5069015622138977 |
| keywords[4].display_name | Bandwidth (computing) |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.48157286643981934 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4231221079826355 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3727377653121948 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3248782753944397 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/robot |
| keywords[9].score | 0.27014559507369995 |
| keywords[9].display_name | Robot |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.21531933546066284 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/mobile-robot |
| keywords[11].score | 0.19787472486495972 |
| keywords[11].display_name | Mobile robot |
| keywords[12].id | https://openalex.org/keywords/computer-graphics |
| keywords[12].score | 0.1663919985294342 |
| keywords[12].display_name | Computer graphics (images) |
| keywords[13].id | https://openalex.org/keywords/computer-network |
| keywords[13].score | 0.14245015382766724 |
| keywords[13].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.10222 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.10222 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.10222 |
| locations[1].id | mag:3026873907 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://export.arxiv.org/pdf/2005.10222 |
| locations[2].id | doi:10.48550/arxiv.2005.10222 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2005.10222 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100638045 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7332-6704 |
| authorships[0].author.display_name | Jincheng Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102149020 |
| authorships[0].affiliations[0].raw_affiliation_string | The Univ. of North Carolina at Charlotte, United States. |
| authorships[0].institutions[0].id | https://openalex.org/I102149020 |
| authorships[0].institutions[0].ror | https://ror.org/04dawnj30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102149020 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of North Carolina at Charlotte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jincheng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Univ. of North Carolina at Charlotte, United States. |
| authorships[1].author.id | https://openalex.org/A5022062855 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0756-2132 |
| authorships[1].author.display_name | Andrew Willis |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102149020 |
| authorships[1].affiliations[0].raw_affiliation_string | The Univ. of North Carolina at Charlotte, United States. |
| authorships[1].institutions[0].id | https://openalex.org/I102149020 |
| authorships[1].institutions[0].ror | https://ror.org/04dawnj30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102149020 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of North Carolina at Charlotte |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrew R. Willis |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Univ. of North Carolina at Charlotte, United States. |
| authorships[2].author.id | https://openalex.org/A5065016330 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jamie L. Godwin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1280414376 |
| authorships[2].affiliations[0].raw_affiliation_string | Air Force Research Labs. (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I1280414376 |
| authorships[2].institutions[0].ror | https://ror.org/02e2egq70 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1280414376, https://openalex.org/I1330347796, https://openalex.org/I4210102105, https://openalex.org/I4389425425 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | United States Air Force Research Laboratory |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jamie Godwin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Air Force Research Labs. (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.10222 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Compute-Bound and Low-Bandwidth Distributed 3D Graph-SLAM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W3009207762, https://openalex.org/W2397301397, https://openalex.org/W2782727843, https://openalex.org/W2287102623, https://openalex.org/W2952849936, https://openalex.org/W2515381329, https://openalex.org/W2276148615, https://openalex.org/W3163407318, https://openalex.org/W1996464169, https://openalex.org/W1716229439, https://openalex.org/W3176451882, https://openalex.org/W3206403068, https://openalex.org/W3038239029, https://openalex.org/W960734427, https://openalex.org/W3025978319, https://openalex.org/W2964310454, https://openalex.org/W2970828732, https://openalex.org/W2952760096, https://openalex.org/W2907928353, https://openalex.org/W2970188262 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.10222 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.10222 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.10222 |
| primary_location.id | pmh:oai:arXiv.org:2005.10222 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.10222 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.10222 |
| publication_date | 2020-05-20 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1987648924, https://openalex.org/W2097696373, https://openalex.org/W2128019145, https://openalex.org/W2164406796, https://openalex.org/W46354889, https://openalex.org/W3002818939, https://openalex.org/W2564632156, https://openalex.org/W2091226544, https://openalex.org/W2155548980, https://openalex.org/W170770739, https://openalex.org/W1574773379, https://openalex.org/W2570713051, https://openalex.org/W2040134986, https://openalex.org/W1990012555, https://openalex.org/W2080823437, https://openalex.org/W2011897632, https://openalex.org/W612478963, https://openalex.org/W2527142681, https://openalex.org/W1994075312, https://openalex.org/W2950971522, https://openalex.org/W2963479576, https://openalex.org/W2239361673, https://openalex.org/W2108134361, https://openalex.org/W2062984148, https://openalex.org/W2112082021, https://openalex.org/W2153054365, https://openalex.org/W2054442768, https://openalex.org/W2170049866, https://openalex.org/W2064451896, https://openalex.org/W2774206966, https://openalex.org/W2593712938, https://openalex.org/W2008196645, https://openalex.org/W207116529, https://openalex.org/W2220727758, https://openalex.org/W2182229738, https://openalex.org/W1996520948, https://openalex.org/W2137813581, https://openalex.org/W3134621312, https://openalex.org/W2960971247, https://openalex.org/W2963976794, https://openalex.org/W3174413658, https://openalex.org/W1592619852, https://openalex.org/W2738816079 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 3, 22, 44, 118, 145 |
| abstract_inverted_index.3D | 8, 45, 56, 95, 102, 122, 163 |
| abstract_inverted_index.an | 92, 142 |
| abstract_inverted_index.by | 40, 127 |
| abstract_inverted_index.is | 18, 38, 91 |
| abstract_inverted_index.it | 126 |
| abstract_inverted_index.of | 15, 21, 33, 43, 71, 82, 88, 101, 144, 157, 190 |
| abstract_inverted_index.to | 28, 48, 148, 166, 187 |
| abstract_inverted_index.DVO | 116 |
| abstract_inverted_index.Our | 113 |
| abstract_inverted_index.The | 12, 86, 154 |
| abstract_inverted_index.and | 30, 75, 124, 137, 140, 168, 179, 197 |
| abstract_inverted_index.can | 78 |
| abstract_inverted_index.for | 6, 121 |
| abstract_inverted_index.key | 13 |
| abstract_inverted_index.map | 10, 130, 171 |
| abstract_inverted_index.may | 66, 194 |
| abstract_inverted_index.new | 4, 188 |
| abstract_inverted_index.the | 19, 34, 41, 68, 72, 80, 83, 89, 150 |
| abstract_inverted_index.SLAM | 9, 185, 203 |
| abstract_inverted_index.This | 0, 183 |
| abstract_inverted_index.data | 105 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.have | 195 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.size | 81 |
| abstract_inverted_index.that | 53, 98, 193, 200 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.uses | 115 |
| abstract_inverted_index.with | 110, 162, 174 |
| abstract_inverted_index.SLAM, | 117 |
| abstract_inverted_index.bound | 64 |
| abstract_inverted_index.cloud | 47, 50, 58 |
| abstract_inverted_index.dense | 55 |
| abstract_inverted_index.image | 111 |
| abstract_inverted_index.joint | 155 |
| abstract_inverted_index.local | 60, 134 |
| abstract_inverted_index.needs | 32 |
| abstract_inverted_index.opens | 184 |
| abstract_inverted_index.other | 202 |
| abstract_inverted_index.plane | 49, 152 |
| abstract_inverted_index.point | 46, 57 |
| abstract_inverted_index.share | 149 |
| abstract_inverted_index.tasks | 132, 139 |
| abstract_inverted_index.their | 175 |
| abstract_inverted_index.these | 158 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.agents | 161 |
| abstract_inverted_index.allows | 160 |
| abstract_inverted_index.effect | 156 |
| abstract_inverted_index.limits | 199 |
| abstract_inverted_index.memory | 198 |
| abstract_inverted_index.planar | 61, 103, 107 |
| abstract_inverted_index.swaths | 100 |
| abstract_inverted_index.Compute | 63 |
| abstract_inverted_index.Control | 138 |
| abstract_inverted_index.article | 1, 17 |
| abstract_inverted_index.channel | 181 |
| abstract_inverted_index.clouds. | 153 |
| abstract_inverted_index.extends | 125 |
| abstract_inverted_index.leading | 119 |
| abstract_inverted_index.mapping | 186 |
| abstract_inverted_index.network | 146 |
| abstract_inverted_index.onboard | 176 |
| abstract_inverted_index.patches | 108 |
| abstract_inverted_index.result. | 85 |
| abstract_inverted_index.robotic | 35, 191 |
| abstract_inverted_index.sensing | 164 |
| abstract_inverted_index.surface | 104 |
| abstract_inverted_index.adaptive | 94 |
| abstract_inverted_index.addition | 143 |
| abstract_inverted_index.afforded | 39 |
| abstract_inverted_index.approach | 5, 90, 114 |
| abstract_inverted_index.backbone | 87 |
| abstract_inverted_index.creation | 20 |
| abstract_inverted_index.duration | 70 |
| abstract_inverted_index.includes | 141 |
| abstract_inverted_index.mapping, | 123 |
| abstract_inverted_index.patches. | 62 |
| abstract_inverted_index.prohibit | 201 |
| abstract_inverted_index.protocol | 147 |
| abstract_inverted_index.restrict | 67, 79 |
| abstract_inverted_index.Guidance, | 135 |
| abstract_inverted_index.algorithm | 52, 74, 97, 120 |
| abstract_inverted_index.bandwidth | 29 |
| abstract_inverted_index.building. | 11 |
| abstract_inverted_index.calculate | 167 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.isolating | 129 |
| abstract_inverted_index.platform. | 36 |
| abstract_inverted_index.platforms | 65, 77, 192 |
| abstract_inverted_index.resources | 178 |
| abstract_inverted_index.textures. | 112 |
| abstract_inverted_index.attributed | 109 |
| abstract_inverted_index.categories | 189 |
| abstract_inverted_index.compressed | 151, 170 |
| abstract_inverted_index.graph-SLAM | 24 |
| abstract_inverted_index.responsive | 27 |
| abstract_inverted_index.solutions. | 204 |
| abstract_inverted_index.transforms | 99 |
| abstract_inverted_index.ultra-fast | 93 |
| abstract_inverted_index.Navigation, | 136 |
| abstract_inverted_index.capacities. | 182 |
| abstract_inverted_index.communicate | 169 |
| abstract_inverted_index.compression | 51, 73, 84, 96 |
| abstract_inverted_index.distributed | 7, 23 |
| abstract_inverted_index.information | 172 |
| abstract_inverted_index.integration | 42, 131 |
| abstract_inverted_index.approximates | 54 |
| abstract_inverted_index.architecture | 26 |
| abstract_inverted_index.capabilities | 165 |
| abstract_inverted_index.commensurate | 173 |
| abstract_inverted_index.contribution | 14 |
| abstract_inverted_index.map-building | 25 |
| abstract_inverted_index.communication | 180 |
| abstract_inverted_index.computational | 31, 69, 177, 196 |
| abstract_inverted_index.contributions | 159 |
| abstract_inverted_index.low-bandwidth | 76 |
| abstract_inverted_index.Responsiveness | 37 |
| abstract_inverted_index.computationally | 128 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.72106142 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |