Computer Aided Tuberculosis Detection, A Review Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.21467/proceedings.114.20
This paper aims at presenting a complete picture of advances till now in the field of computer-aided detection of Pulmonary Tuberculosis using Chest X-ray Images. Advances are analyzed in chronological order as they happen and are divided into three phases in which technology shifted into new paradigms. Study concludes that although techniques that use Machine learning based methods for segmentation and classification are prevailing for the moment in terms of flexibility for very particular feature extraction in borderline cases where probabilistic methods can be tweaked according to requirements and accuracy, Deep Convolutional Neural Network based technique will secure higher standings as the computational capability and dataset management improves. Finally, briefly an attempt at using visualization techniques for borderline cases is discussed.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.21467/proceedings.114.20
- OA Status
- hybrid
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3203776408
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3203776408Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21467/proceedings.114.20Digital Object Identifier
- Title
-
Computer Aided Tuberculosis Detection, A ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Pragya Shukla, Jasleen Saini, Barjinder Singh SainiList of authors in order
- Landing page
-
https://doi.org/10.21467/proceedings.114.20Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21467/proceedings.114.20Direct OA link when available
- Concepts
-
Computer science, Flexibility (engineering), Feature extraction, Artificial intelligence, Convolutional neural network, Field (mathematics), Segmentation, Visualization, Machine learning, Deep learning, Feature (linguistics), Pattern recognition (psychology), Linguistics, Pure mathematics, Mathematics, Philosophy, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3203776408 |
|---|---|
| doi | https://doi.org/10.21467/proceedings.114.20 |
| ids.doi | https://doi.org/10.21467/proceedings.114.20 |
| ids.mag | 3203776408 |
| ids.openalex | https://openalex.org/W3203776408 |
| fwci | 0.0 |
| type | review |
| title | Computer Aided Tuberculosis Detection, A Review |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 152 |
| biblio.first_page | 146 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9821000099182129 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9490000009536743 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7780047655105591 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780598303 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6239472031593323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q65921492 |
| concepts[1].display_name | Flexibility (engineering) |
| concepts[2].id | https://openalex.org/C52622490 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6139946579933167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[2].display_name | Feature extraction |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5942434072494507 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5884540677070618 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5577836632728577 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5219368934631348 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C36464697 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4857061803340912 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[7].display_name | Visualization |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4759235680103302 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47138673067092896 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4463620185852051 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.333541601896286 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7780047655105591 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/flexibility |
| keywords[1].score | 0.6239472031593323 |
| keywords[1].display_name | Flexibility (engineering) |
| keywords[2].id | https://openalex.org/keywords/feature-extraction |
| keywords[2].score | 0.6139946579933167 |
| keywords[2].display_name | Feature extraction |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5942434072494507 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5884540677070618 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.5577836632728577 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5219368934631348 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/visualization |
| keywords[7].score | 0.4857061803340912 |
| keywords[7].display_name | Visualization |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4759235680103302 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.47138673067092896 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4463620185852051 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.333541601896286 |
| keywords[11].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.21467/proceedings.114.20 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240747 |
| locations[0].source.issn | 2582-3922 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-3922 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIJR Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIJR Proceedings |
| locations[0].landing_page_url | https://doi.org/10.21467/proceedings.114.20 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5079547403 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2904-750X |
| authorships[0].author.display_name | Pragya Shukla |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Electronics and Communication Dr. B.R. Ambedkar National Institute of Technology Jalandhar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pragya Shukla |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Electronics and Communication Dr. B.R. Ambedkar National Institute of Technology Jalandhar |
| authorships[1].author.id | https://openalex.org/A5081011584 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jasleen Saini |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I51452335 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept of CSE UIET, Panjab University Chandigarh, India |
| authorships[1].institutions[0].id | https://openalex.org/I51452335 |
| authorships[1].institutions[0].ror | https://ror.org/04p2sbk06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51452335 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Panjab University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jasleen Saini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept of CSE UIET, Panjab University Chandigarh, India |
| authorships[2].author.id | https://openalex.org/A5057994698 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0932-6851 |
| authorships[2].author.display_name | Barjinder Singh Saini |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70971781 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of ECE Dr. B.R. Ambedkar National Institute of Technology Jalandhar, India |
| authorships[2].institutions[0].id | https://openalex.org/I70971781 |
| authorships[2].institutions[0].ror | https://ror.org/03xt0bg88 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70971781 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Dr. B. R. Ambedkar National Institute of Technology Jalandhar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | B.S. Saini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of ECE Dr. B.R. Ambedkar National Institute of Technology Jalandhar, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21467/proceedings.114.20 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computer Aided Tuberculosis Detection, A Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2068608913, https://openalex.org/W4293226380, https://openalex.org/W3124914020, https://openalex.org/W4375867731, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3029198973 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21467/proceedings.114.20 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240747 |
| best_oa_location.source.issn | 2582-3922 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-3922 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIJR Proceedings |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIJR Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.21467/proceedings.114.20 |
| primary_location.id | doi:10.21467/proceedings.114.20 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240747 |
| primary_location.source.issn | 2582-3922 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-3922 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIJR Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIJR Proceedings |
| primary_location.landing_page_url | https://doi.org/10.21467/proceedings.114.20 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1994062553, https://openalex.org/W2081114565, https://openalex.org/W3106437781, https://openalex.org/W2745075853, https://openalex.org/W2939788146, https://openalex.org/W2774788879, https://openalex.org/W2789876780, https://openalex.org/W2124776405, https://openalex.org/W2013326484, https://openalex.org/W1500949380, https://openalex.org/W3045801508, https://openalex.org/W4232097126, https://openalex.org/W3003475284, https://openalex.org/W2115597079, https://openalex.org/W2107806345, https://openalex.org/W2342469653, https://openalex.org/W2997888743 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.as | 31, 100 |
| abstract_inverted_index.at | 3, 112 |
| abstract_inverted_index.be | 83 |
| abstract_inverted_index.in | 12, 28, 40, 67, 76 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 8, 15, 18, 69 |
| abstract_inverted_index.to | 86 |
| abstract_inverted_index.and | 34, 60, 88, 104 |
| abstract_inverted_index.are | 26, 35, 62 |
| abstract_inverted_index.can | 82 |
| abstract_inverted_index.for | 58, 64, 71, 116 |
| abstract_inverted_index.new | 45 |
| abstract_inverted_index.now | 11 |
| abstract_inverted_index.the | 13, 65, 101 |
| abstract_inverted_index.use | 53 |
| abstract_inverted_index.Deep | 90 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.into | 37, 44 |
| abstract_inverted_index.that | 49, 52 |
| abstract_inverted_index.they | 32 |
| abstract_inverted_index.till | 10 |
| abstract_inverted_index.very | 72 |
| abstract_inverted_index.will | 96 |
| abstract_inverted_index.Chest | 22 |
| abstract_inverted_index.Study | 47 |
| abstract_inverted_index.X-ray | 23 |
| abstract_inverted_index.based | 56, 94 |
| abstract_inverted_index.cases | 78, 118 |
| abstract_inverted_index.field | 14 |
| abstract_inverted_index.order | 30 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.terms | 68 |
| abstract_inverted_index.three | 38 |
| abstract_inverted_index.using | 21, 113 |
| abstract_inverted_index.where | 79 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.Neural | 92 |
| abstract_inverted_index.happen | 33 |
| abstract_inverted_index.higher | 98 |
| abstract_inverted_index.moment | 66 |
| abstract_inverted_index.phases | 39 |
| abstract_inverted_index.secure | 97 |
| abstract_inverted_index.Images. | 24 |
| abstract_inverted_index.Machine | 54 |
| abstract_inverted_index.Network | 93 |
| abstract_inverted_index.attempt | 111 |
| abstract_inverted_index.briefly | 109 |
| abstract_inverted_index.dataset | 105 |
| abstract_inverted_index.divided | 36 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.methods | 57, 81 |
| abstract_inverted_index.picture | 7 |
| abstract_inverted_index.shifted | 43 |
| abstract_inverted_index.tweaked | 84 |
| abstract_inverted_index.Advances | 25 |
| abstract_inverted_index.Finally, | 108 |
| abstract_inverted_index.advances | 9 |
| abstract_inverted_index.although | 50 |
| abstract_inverted_index.analyzed | 27 |
| abstract_inverted_index.complete | 6 |
| abstract_inverted_index.learning | 55 |
| abstract_inverted_index.Pulmonary | 19 |
| abstract_inverted_index.according | 85 |
| abstract_inverted_index.accuracy, | 89 |
| abstract_inverted_index.concludes | 48 |
| abstract_inverted_index.detection | 17 |
| abstract_inverted_index.improves. | 107 |
| abstract_inverted_index.standings | 99 |
| abstract_inverted_index.technique | 95 |
| abstract_inverted_index.borderline | 77, 117 |
| abstract_inverted_index.capability | 103 |
| abstract_inverted_index.discussed. | 120 |
| abstract_inverted_index.extraction | 75 |
| abstract_inverted_index.management | 106 |
| abstract_inverted_index.paradigms. | 46 |
| abstract_inverted_index.particular | 73 |
| abstract_inverted_index.presenting | 4 |
| abstract_inverted_index.prevailing | 63 |
| abstract_inverted_index.techniques | 51, 115 |
| abstract_inverted_index.technology | 42 |
| abstract_inverted_index.flexibility | 70 |
| abstract_inverted_index.Tuberculosis | 20 |
| abstract_inverted_index.requirements | 87 |
| abstract_inverted_index.segmentation | 59 |
| abstract_inverted_index.Convolutional | 91 |
| abstract_inverted_index.chronological | 29 |
| abstract_inverted_index.computational | 102 |
| abstract_inverted_index.probabilistic | 80 |
| abstract_inverted_index.visualization | 114 |
| abstract_inverted_index.classification | 61 |
| abstract_inverted_index.computer-aided | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.19001664 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |