Computer‐Vision‐Based Approach to Classify and Quantify Flaws in Li‐Ion Electrodes Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1002/smtd.202200887
X‐ray computed tomography (X‐ray CT) is a non‐destructive characterization technique that in recent years has been adopted to study the microstructure of battery electrodes. However, the often manual and laborious data analysis process hinders the extraction of useful metrics that can ultimately inform the mechanisms behind cycle life degradation. This work presents a novel approach that combines two convolutional neural networks to first locate and segment each particle in a nano‐CT LiNiMnCoO 2 (NMC) electrode dataset, and successively classifies each particle according to the presence of flaws or cracks within its internal structure. Metrics extracted from the computer vision segmentation are validated with respect to traditional threshold‐based segmentation, confirming that flawed particles are correctly identified as single entities. Successively, slices from each particle are analyzed by a pre‐trained classifier to detect the presence of flaws or cracks. The models are used to quantify microstructural evolution in uncycled and cycled NMC811 electrodes, as well as the number of flawed particles in a NMC622 electrode. As a proof‐of‐concept, a 3‐phase segmentation is also presented, whereby each individual flaw is segmented as a separate pixel label. It is anticipated that this analysis pipeline will be widely used in the field of battery research and beyond.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/smtd.202200887
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887
- OA Status
- hybrid
- Cited By
- 11
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4295733445
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4295733445Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/smtd.202200887Digital Object Identifier
- Title
-
Computer‐Vision‐Based Approach to Classify and Quantify Flaws in Li‐Ion ElectrodesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-11Full publication date if available
- Authors
-
Sohrab R. Daemi, Chao Tan, Thomas G. Tranter, Thomas M. M. Heenan, Aaron Wade, Luis Salinas‐Farran, Alice V. Llewellyn, Xuekun Lu, Alessia Matruglio, Daniel Brett, Rhodri Jervis, Paul R. ShearingList of authors in order
- Landing page
-
https://doi.org/10.1002/smtd.202200887Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Computer science, Convolutional neural network, Electrode, Pipeline (software), Battery (electricity), Classifier (UML), Pixel, Deep learning, Pattern recognition (psychology), Computer vision, Physics, Programming language, Power (physics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 4, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4295733445 |
|---|---|
| doi | https://doi.org/10.1002/smtd.202200887 |
| ids.doi | https://doi.org/10.1002/smtd.202200887 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36089665 |
| ids.openalex | https://openalex.org/W4295733445 |
| fwci | 1.09950871 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D007091 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Image Processing, Computer-Assisted |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D014057 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Tomography, X-Ray Computed |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D003201 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Computers |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D004566 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Electrodes |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D007091 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Image Processing, Computer-Assisted |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D014057 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Tomography, X-Ray Computed |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D003201 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Computers |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D004566 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Electrodes |
| type | article |
| title | Computer‐Vision‐Based Approach to Classify and Quantify Flaws in Li‐Ion Electrodes |
| awards[0].id | https://openalex.org/G6944738600 |
| awards[0].funder_id | https://openalex.org/F4320317150 |
| awards[0].display_name | |
| awards[0].funder_award_id | FIRG024 |
| awards[0].funder_display_name | Faraday Institution |
| awards[1].id | https://openalex.org/G6384480295 |
| awards[1].funder_id | https://openalex.org/F4320317150 |
| awards[1].display_name | |
| awards[1].funder_award_id | FIRG025 |
| awards[1].funder_display_name | Faraday Institution |
| awards[2].id | https://openalex.org/G662877069 |
| awards[2].funder_id | https://openalex.org/F4320317150 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/S003053/1 |
| awards[2].funder_display_name | Faraday Institution |
| awards[3].id | https://openalex.org/G5019177369 |
| awards[3].funder_id | https://openalex.org/F4320317150 |
| awards[3].display_name | |
| awards[3].funder_award_id | FIRG016 |
| awards[3].funder_display_name | Faraday Institution |
| biblio.issue | 10 |
| biblio.volume | 6 |
| biblio.last_page | e2200887 |
| biblio.first_page | e2200887 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T11091 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Extraction and Separation Processes |
| funders[0].id | https://openalex.org/F4320317150 |
| funders[0].ror | https://ror.org/05dt4bt98 |
| funders[0].display_name | Faraday Institution |
| is_xpac | False |
| apc_list.value | 4020 |
| apc_list.currency | USD |
| apc_list.value_usd | 4020 |
| apc_paid.value | 4020 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4020 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6964452266693115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6466805338859558 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.644014835357666 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6007827520370483 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C17525397 |
| concepts[4].level | 2 |
| concepts[4].score | 0.514940083026886 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176140 |
| concepts[4].display_name | Electrode |
| concepts[5].id | https://openalex.org/C43521106 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5015714168548584 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[5].display_name | Pipeline (software) |
| concepts[6].id | https://openalex.org/C555008776 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4476968050003052 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[6].display_name | Battery (electricity) |
| concepts[7].id | https://openalex.org/C95623464 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44230973720550537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[7].display_name | Classifier (UML) |
| concepts[8].id | https://openalex.org/C160633673 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42680612206459045 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[8].display_name | Pixel |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41072142124176025 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3884100317955017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3810369372367859 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09002679586410522 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C163258240 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[14].display_name | Power (physics) |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6964452266693115 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6466805338859558 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.644014835357666 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6007827520370483 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/electrode |
| keywords[4].score | 0.514940083026886 |
| keywords[4].display_name | Electrode |
| keywords[5].id | https://openalex.org/keywords/pipeline |
| keywords[5].score | 0.5015714168548584 |
| keywords[5].display_name | Pipeline (software) |
| keywords[6].id | https://openalex.org/keywords/battery |
| keywords[6].score | 0.4476968050003052 |
| keywords[6].display_name | Battery (electricity) |
| keywords[7].id | https://openalex.org/keywords/classifier |
| keywords[7].score | 0.44230973720550537 |
| keywords[7].display_name | Classifier (UML) |
| keywords[8].id | https://openalex.org/keywords/pixel |
| keywords[8].score | 0.42680612206459045 |
| keywords[8].display_name | Pixel |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.41072142124176025 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3884100317955017 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.3810369372367859 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.09002679586410522 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1002/smtd.202200887 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232622 |
| locations[0].source.issn | 2366-9608 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2366-9608 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Small Methods |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Small Methods |
| locations[0].landing_page_url | https://doi.org/10.1002/smtd.202200887 |
| locations[1].id | pmid:36089665 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Small methods |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36089665 |
| locations[2].id | pmh:oai:eprints.ucl.ac.uk.OAI2:10155966 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400024 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | UCL Discovery (University College London) |
| locations[2].source.host_organization | https://openalex.org/I45129253 |
| locations[2].source.host_organization_name | University College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I45129253 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Small Methods , Article e2200887. (2022) (In press). |
| locations[2].landing_page_url | https://discovery.ucl.ac.uk/id/eprint/10155966/ |
| locations[3].id | pmh:oai:qmro.qmul.ac.uk:123456789/84305 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400530 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Queen Mary Research Online (Queen Mary University of London) |
| locations[3].source.host_organization | https://openalex.org/I166337079 |
| locations[3].source.host_organization_name | Queen Mary University of London |
| locations[3].source.host_organization_lineage | https://openalex.org/I166337079 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://qmro.qmul.ac.uk/xmlui/handle/123456789/84305 |
| locations[4].id | pmh:oai:spiral.imperial.ac.uk:10044/1/107781 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401396 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Spiral (Imperial College London) |
| locations[4].source.host_organization | https://openalex.org/I47508984 |
| locations[4].source.host_organization_name | Imperial College London |
| locations[4].source.host_organization_lineage | https://openalex.org/I47508984 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Journal Article |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://hdl.handle.net/10044/1/107781 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5064258306 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1152-7874 |
| authorships[0].author.display_name | Sohrab R. Daemi |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[0].institutions[0].id | https://openalex.org/I45129253 |
| authorships[0].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sohrab R. Daemi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[1].author.id | https://openalex.org/A5016741691 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3642-2670 |
| authorships[1].author.display_name | Chao Tan |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chun Tan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[2].author.id | https://openalex.org/A5084596555 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4721-5941 |
| authorships[2].author.display_name | Thomas G. Tranter |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[2].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[2].institutions[0].id | https://openalex.org/I45129253 |
| authorships[2].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thomas G. Tranter |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[3].author.id | https://openalex.org/A5026550763 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9912-4772 |
| authorships[3].author.display_name | Thomas M. M. Heenan |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210156703 |
| authorships[3].affiliations[1].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[3].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[3].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | The Faraday Institution |
| authorships[3].institutions[1].id | https://openalex.org/I45129253 |
| authorships[3].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thomas M. M. Heenan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[4].author.id | https://openalex.org/A5059992659 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1713-5617 |
| authorships[4].author.display_name | Aaron Wade |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[4].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210156703 |
| authorships[4].affiliations[1].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[4].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[4].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | The Faraday Institution |
| authorships[4].institutions[1].id | https://openalex.org/I45129253 |
| authorships[4].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | University College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Aaron Wade |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[5].author.id | https://openalex.org/A5065252441 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2341-4575 |
| authorships[5].author.display_name | Luis Salinas‐Farran |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[5].institutions[0].id | https://openalex.org/I45129253 |
| authorships[5].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Luis Salinas‐Farran |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[6].author.id | https://openalex.org/A5023943959 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1071-3824 |
| authorships[6].author.display_name | Alice V. Llewellyn |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[6].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210156703 |
| authorships[6].affiliations[1].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[6].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[6].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | The Faraday Institution |
| authorships[6].institutions[1].id | https://openalex.org/I45129253 |
| authorships[6].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[6].institutions[1].country_code | GB |
| authorships[6].institutions[1].display_name | University College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Alice V. Llewellyn |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[7].author.id | https://openalex.org/A5102709371 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Xuekun Lu |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[7].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[7].institutions[0].id | https://openalex.org/I45129253 |
| authorships[7].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xuekun Lu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[8].author.id | https://openalex.org/A5027542141 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8036-2746 |
| authorships[8].author.display_name | Alessia Matruglio |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[8].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[8].institutions[0].id | https://openalex.org/I45129253 |
| authorships[8].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | University College London |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Alessia Matruglio |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[9].author.id | https://openalex.org/A5103279970 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8484-4865 |
| authorships[9].author.display_name | Daniel Brett |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210156703 |
| authorships[9].affiliations[0].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I45129253 |
| authorships[9].affiliations[1].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[9].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[9].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[9].institutions[0].type | nonprofit |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | The Faraday Institution |
| authorships[9].institutions[1].id | https://openalex.org/I45129253 |
| authorships[9].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[9].institutions[1].country_code | GB |
| authorships[9].institutions[1].display_name | University College London |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Daniel J.L. Brett |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[10].author.id | https://openalex.org/A5058730172 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2784-7802 |
| authorships[10].author.display_name | Rhodri Jervis |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[10].affiliations[0].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I4210156703 |
| authorships[10].affiliations[1].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[10].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[10].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[10].institutions[0].type | nonprofit |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | The Faraday Institution |
| authorships[10].institutions[1].id | https://openalex.org/I45129253 |
| authorships[10].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[10].institutions[1].country_code | GB |
| authorships[10].institutions[1].display_name | University College London |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Rhodri Jervis |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[11].author.id | https://openalex.org/A5053233463 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1387-9531 |
| authorships[11].author.display_name | Paul R. Shearing |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I4210156703 |
| authorships[11].affiliations[0].raw_affiliation_string | The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I45129253 |
| authorships[11].affiliations[1].raw_affiliation_string | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK |
| authorships[11].institutions[0].id | https://openalex.org/I4210156703 |
| authorships[11].institutions[0].ror | https://ror.org/05dt4bt98 |
| authorships[11].institutions[0].type | nonprofit |
| authorships[11].institutions[0].lineage | https://openalex.org/I4210156703 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | The Faraday Institution |
| authorships[11].institutions[1].id | https://openalex.org/I45129253 |
| authorships[11].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[11].institutions[1].country_code | GB |
| authorships[11].institutions[1].display_name | University College London |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Paul R. Shearing |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE UK, The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computer‐Vision‐Based Approach to Classify and Quantify Flaws in Li‐Ion Electrodes |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W4312417841, https://openalex.org/W4321369474, https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W4200173597, https://openalex.org/W3116150086, https://openalex.org/W2517104666, https://openalex.org/W2999805992, https://openalex.org/W2005437358, https://openalex.org/W2790662084 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1002/smtd.202200887 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232622 |
| best_oa_location.source.issn | 2366-9608 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2366-9608 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Small Methods |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Small Methods |
| best_oa_location.landing_page_url | https://doi.org/10.1002/smtd.202200887 |
| primary_location.id | doi:10.1002/smtd.202200887 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232622 |
| primary_location.source.issn | 2366-9608 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2366-9608 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Small Methods |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202200887 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Small Methods |
| primary_location.landing_page_url | https://doi.org/10.1002/smtd.202200887 |
| publication_date | 2022-09-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1949231392, https://openalex.org/W1977594029, https://openalex.org/W2965602659, https://openalex.org/W1985013794, https://openalex.org/W2576928823, https://openalex.org/W3197309552, https://openalex.org/W2334227242, https://openalex.org/W2207310495, https://openalex.org/W2945544458, https://openalex.org/W3023688594, https://openalex.org/W2083860642, https://openalex.org/W3169467757, https://openalex.org/W2921742660, https://openalex.org/W2021526920, https://openalex.org/W3201369469, https://openalex.org/W3013325357, https://openalex.org/W2924382816, https://openalex.org/W2998222951, https://openalex.org/W2978139092, https://openalex.org/W1145556568, https://openalex.org/W2619665115, https://openalex.org/W3209556830, https://openalex.org/W3021912390, https://openalex.org/W2806070179, https://openalex.org/W1861492603, https://openalex.org/W2883903407, https://openalex.org/W3095114686, https://openalex.org/W2990446428, https://openalex.org/W4281634990, https://openalex.org/W3100240229, https://openalex.org/W2612524813, https://openalex.org/W6605151665, https://openalex.org/W2898767632, https://openalex.org/W3162014261, https://openalex.org/W2538920246 |
| referenced_works_count | 35 |
| abstract_inverted_index.2 | 73 |
| abstract_inverted_index.a | 7, 53, 70, 127, 161, 165, 167, 180 |
| abstract_inverted_index.As | 164 |
| abstract_inverted_index.It | 184 |
| abstract_inverted_index.as | 116, 152, 154, 179 |
| abstract_inverted_index.be | 192 |
| abstract_inverted_index.by | 126 |
| abstract_inverted_index.in | 12, 69, 146, 160, 195 |
| abstract_inverted_index.is | 6, 170, 177, 185 |
| abstract_inverted_index.of | 22, 37, 86, 134, 157, 198 |
| abstract_inverted_index.or | 88, 136 |
| abstract_inverted_index.to | 18, 62, 83, 105, 130, 142 |
| abstract_inverted_index.CT) | 5 |
| abstract_inverted_index.The | 138 |
| abstract_inverted_index.and | 29, 65, 77, 148, 201 |
| abstract_inverted_index.are | 101, 113, 124, 140 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.its | 91 |
| abstract_inverted_index.the | 20, 26, 35, 44, 84, 97, 132, 155, 196 |
| abstract_inverted_index.two | 58 |
| abstract_inverted_index.This | 50 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.been | 16 |
| abstract_inverted_index.data | 31 |
| abstract_inverted_index.each | 67, 80, 122, 174 |
| abstract_inverted_index.flaw | 176 |
| abstract_inverted_index.from | 96, 121 |
| abstract_inverted_index.life | 48 |
| abstract_inverted_index.that | 11, 40, 56, 110, 187 |
| abstract_inverted_index.this | 188 |
| abstract_inverted_index.used | 141, 194 |
| abstract_inverted_index.well | 153 |
| abstract_inverted_index.will | 191 |
| abstract_inverted_index.with | 103 |
| abstract_inverted_index.work | 51 |
| abstract_inverted_index.(NMC) | 74 |
| abstract_inverted_index.cycle | 47 |
| abstract_inverted_index.field | 197 |
| abstract_inverted_index.first | 63 |
| abstract_inverted_index.flaws | 87, 135 |
| abstract_inverted_index.novel | 54 |
| abstract_inverted_index.often | 27 |
| abstract_inverted_index.pixel | 182 |
| abstract_inverted_index.study | 19 |
| abstract_inverted_index.years | 14 |
| abstract_inverted_index.NMC622 | 162 |
| abstract_inverted_index.NMC811 | 150 |
| abstract_inverted_index.behind | 46 |
| abstract_inverted_index.cracks | 89 |
| abstract_inverted_index.cycled | 149 |
| abstract_inverted_index.detect | 131 |
| abstract_inverted_index.flawed | 111, 158 |
| abstract_inverted_index.inform | 43 |
| abstract_inverted_index.label. | 183 |
| abstract_inverted_index.locate | 64 |
| abstract_inverted_index.manual | 28 |
| abstract_inverted_index.models | 139 |
| abstract_inverted_index.neural | 60 |
| abstract_inverted_index.number | 156 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.single | 117 |
| abstract_inverted_index.slices | 120 |
| abstract_inverted_index.useful | 38 |
| abstract_inverted_index.vision | 99 |
| abstract_inverted_index.widely | 193 |
| abstract_inverted_index.within | 90 |
| abstract_inverted_index.Metrics | 94 |
| abstract_inverted_index.X‐ray | 1 |
| abstract_inverted_index.adopted | 17 |
| abstract_inverted_index.battery | 23, 199 |
| abstract_inverted_index.beyond. | 202 |
| abstract_inverted_index.cracks. | 137 |
| abstract_inverted_index.hinders | 34 |
| abstract_inverted_index.metrics | 39 |
| abstract_inverted_index.process | 33 |
| abstract_inverted_index.respect | 104 |
| abstract_inverted_index.segment | 66 |
| abstract_inverted_index.whereby | 173 |
| abstract_inverted_index.(X‐ray | 4 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.analysis | 32, 189 |
| abstract_inverted_index.analyzed | 125 |
| abstract_inverted_index.approach | 55 |
| abstract_inverted_index.combines | 57 |
| abstract_inverted_index.computed | 2 |
| abstract_inverted_index.computer | 98 |
| abstract_inverted_index.dataset, | 76 |
| abstract_inverted_index.internal | 92 |
| abstract_inverted_index.networks | 61 |
| abstract_inverted_index.particle | 68, 81, 123 |
| abstract_inverted_index.pipeline | 190 |
| abstract_inverted_index.presence | 85, 133 |
| abstract_inverted_index.presents | 52 |
| abstract_inverted_index.quantify | 143 |
| abstract_inverted_index.research | 200 |
| abstract_inverted_index.separate | 181 |
| abstract_inverted_index.uncycled | 147 |
| abstract_inverted_index.3‐phase | 168 |
| abstract_inverted_index.LiNiMnCoO | 72 |
| abstract_inverted_index.according | 82 |
| abstract_inverted_index.correctly | 114 |
| abstract_inverted_index.electrode | 75 |
| abstract_inverted_index.entities. | 118 |
| abstract_inverted_index.evolution | 145 |
| abstract_inverted_index.extracted | 95 |
| abstract_inverted_index.laborious | 30 |
| abstract_inverted_index.nano‐CT | 71 |
| abstract_inverted_index.particles | 112, 159 |
| abstract_inverted_index.segmented | 178 |
| abstract_inverted_index.technique | 10 |
| abstract_inverted_index.validated | 102 |
| abstract_inverted_index.classifier | 129 |
| abstract_inverted_index.classifies | 79 |
| abstract_inverted_index.confirming | 109 |
| abstract_inverted_index.electrode. | 163 |
| abstract_inverted_index.extraction | 36 |
| abstract_inverted_index.identified | 115 |
| abstract_inverted_index.individual | 175 |
| abstract_inverted_index.mechanisms | 45 |
| abstract_inverted_index.presented, | 172 |
| abstract_inverted_index.structure. | 93 |
| abstract_inverted_index.tomography | 3 |
| abstract_inverted_index.ultimately | 42 |
| abstract_inverted_index.anticipated | 186 |
| abstract_inverted_index.electrodes, | 151 |
| abstract_inverted_index.electrodes. | 24 |
| abstract_inverted_index.traditional | 106 |
| abstract_inverted_index.degradation. | 49 |
| abstract_inverted_index.segmentation | 100, 169 |
| abstract_inverted_index.successively | 78 |
| abstract_inverted_index.Successively, | 119 |
| abstract_inverted_index.convolutional | 59 |
| abstract_inverted_index.pre‐trained | 128 |
| abstract_inverted_index.segmentation, | 108 |
| abstract_inverted_index.microstructure | 21 |
| abstract_inverted_index.microstructural | 144 |
| abstract_inverted_index.characterization | 9 |
| abstract_inverted_index.non‐destructive | 8 |
| abstract_inverted_index.threshold‐based | 107 |
| abstract_inverted_index.proof‐of‐concept, | 166 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5058730172, https://openalex.org/A5053233463 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I4210156703, https://openalex.org/I45129253 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.72148051 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |