Computing Complex Temporal Join Queries Efficiently Article Swipe
Xiao Hu
,
Stavros Sintos
,
Junyang Gao
,
Pankaj K. Agarwal
,
Jun Yang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3514221.3517893
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3514221.3517893
This paper studies multi-way join queries over temporal data, where each tuple is associated with a valid time interval indicating when the tuple is valid. A temporal join requires that joining tuples' valid intervals intersect. Previous work on temporal joins has focused on joining two relations, but pairwise processing is often inefficient because it may generate unnecessarily large intermediate results. This paper investigates how to efficiently process complex temporal joins involving multiple relations. We also consider a useful extension, durable temporal joins, which further selects results with long enough valid intervals so they are not merely transient patterns.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3514221.3517893
- https://dl.acm.org/doi/pdf/10.1145/3514221.3517893
- OA Status
- hybrid
- Cited By
- 6
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281803334
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281803334Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3514221.3517893Digital Object Identifier
- Title
-
Computing Complex Temporal Join Queries EfficientlyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-10Full publication date if available
- Authors
-
Xiao Hu, Stavros Sintos, Junyang Gao, Pankaj K. Agarwal, Jun YangList of authors in order
- Landing page
-
https://doi.org/10.1145/3514221.3517893Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3514221.3517893Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3514221.3517893Direct OA link when available
- Concepts
-
Joins, Tuple, Computer science, Join (topology), Extension (predicate logic), Temporal database, Pairwise comparison, Interval (graph theory), Theoretical computer science, Process (computing), Data mining, Artificial intelligence, Mathematics, Programming language, Discrete mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281803334 |
|---|---|
| doi | https://doi.org/10.1145/3514221.3517893 |
| ids.doi | https://doi.org/10.1145/3514221.3517893 |
| ids.openalex | https://openalex.org/W4281803334 |
| fwci | 0.84158416 |
| type | article |
| title | Computing Complex Temporal Join Queries Efficiently |
| awards[0].id | https://openalex.org/G5162918490 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | IIS-1814493, CCF-2007556, IIS-2008107 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2090 |
| biblio.first_page | 2076 |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T10317 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Database Systems and Queries |
| topics[2].id | https://openalex.org/T11269 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Algorithms and Data Compression |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778692605 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9733563661575317 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4041866 |
| concepts[0].display_name | Joins |
| concepts[1].id | https://openalex.org/C118930307 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8352820873260498 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q600590 |
| concepts[1].display_name | Tuple |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8071398735046387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776124973 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7589796781539917 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3183033 |
| concepts[3].display_name | Join (topology) |
| concepts[4].id | https://openalex.org/C2778029271 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6120588183403015 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5421931 |
| concepts[4].display_name | Extension (predicate logic) |
| concepts[5].id | https://openalex.org/C77277458 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5525528788566589 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1969246 |
| concepts[5].display_name | Temporal database |
| concepts[6].id | https://openalex.org/C184898388 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5341704487800598 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[6].display_name | Pairwise comparison |
| concepts[7].id | https://openalex.org/C2778067643 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5296787023544312 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[7].display_name | Interval (graph theory) |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5086325407028198 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4272863268852234 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36471104621887207 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.14145898818969727 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13523399829864502 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1327032446861267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C118615104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08412212133407593 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[14].display_name | Discrete mathematics |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/joins |
| keywords[0].score | 0.9733563661575317 |
| keywords[0].display_name | Joins |
| keywords[1].id | https://openalex.org/keywords/tuple |
| keywords[1].score | 0.8352820873260498 |
| keywords[1].display_name | Tuple |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.8071398735046387 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/join |
| keywords[3].score | 0.7589796781539917 |
| keywords[3].display_name | Join (topology) |
| keywords[4].id | https://openalex.org/keywords/extension |
| keywords[4].score | 0.6120588183403015 |
| keywords[4].display_name | Extension (predicate logic) |
| keywords[5].id | https://openalex.org/keywords/temporal-database |
| keywords[5].score | 0.5525528788566589 |
| keywords[5].display_name | Temporal database |
| keywords[6].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[6].score | 0.5341704487800598 |
| keywords[6].display_name | Pairwise comparison |
| keywords[7].id | https://openalex.org/keywords/interval |
| keywords[7].score | 0.5296787023544312 |
| keywords[7].display_name | Interval (graph theory) |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.5086325407028198 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.4272863268852234 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.36471104621887207 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.14145898818969727 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.13523399829864502 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.1327032446861267 |
| keywords[13].display_name | Programming language |
| keywords[14].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[14].score | 0.08412212133407593 |
| keywords[14].display_name | Discrete mathematics |
| language | en |
| locations[0].id | doi:10.1145/3514221.3517893 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608845 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 2022 International Conference on Management of Data |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514221.3517893 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2022 International Conference on Management of Data |
| locations[0].landing_page_url | https://doi.org/10.1145/3514221.3517893 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034417920 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiao Hu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[0].affiliations[0].raw_affiliation_string | Duke University, Durham, NC, USA |
| authorships[0].institutions[0].id | https://openalex.org/I170897317 |
| authorships[0].institutions[0].ror | https://ror.org/00py81415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Duke University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiao Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Duke University, Durham, NC, USA |
| authorships[1].author.id | https://openalex.org/A5015883931 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2114-8886 |
| authorships[1].author.display_name | Stavros Sintos |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39422238, https://openalex.org/I40347166 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Chicago, Chicago, IL, USA |
| authorships[1].institutions[0].id | https://openalex.org/I40347166 |
| authorships[1].institutions[0].ror | https://ror.org/024mw5h28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40347166 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Chicago |
| authorships[1].institutions[1].id | https://openalex.org/I39422238 |
| authorships[1].institutions[1].ror | https://ror.org/02mpq6x41 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I39422238 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Illinois Chicago |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stavros Sintos |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Chicago, Chicago, IL, USA |
| authorships[2].author.id | https://openalex.org/A5032897270 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Junyang Gao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[2].affiliations[0].raw_affiliation_string | Google, New York, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[2].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Google (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junyang Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Google, New York, NY, USA |
| authorships[3].author.id | https://openalex.org/A5058649592 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9439-181X |
| authorships[3].author.display_name | Pankaj K. Agarwal |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[3].affiliations[0].raw_affiliation_string | Duke University, Durham, NC, USA |
| authorships[3].institutions[0].id | https://openalex.org/I170897317 |
| authorships[3].institutions[0].ror | https://ror.org/00py81415 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Duke University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pankaj K. Agarwal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Duke University, Durham, NC, USA |
| authorships[4].author.id | https://openalex.org/A5058999081 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6615-3139 |
| authorships[4].author.display_name | Jun Yang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[4].affiliations[0].raw_affiliation_string | Duke University, Durham, NC, USA |
| authorships[4].institutions[0].id | https://openalex.org/I170897317 |
| authorships[4].institutions[0].ror | https://ror.org/00py81415 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Duke University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jun Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Duke University, Durham, NC, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3514221.3517893 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Computing Complex Temporal Join Queries Efficiently |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W2393491644, https://openalex.org/W4206577045, https://openalex.org/W3086237447, https://openalex.org/W650102067, https://openalex.org/W2016456293, https://openalex.org/W2740404111, https://openalex.org/W1550806730, https://openalex.org/W1496672428, https://openalex.org/W2589740103, https://openalex.org/W1966967794 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3514221.3517893 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608845 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 2022 International Conference on Management of Data |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514221.3517893 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2022 International Conference on Management of Data |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3514221.3517893 |
| primary_location.id | doi:10.1145/3514221.3517893 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608845 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 2022 International Conference on Management of Data |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514221.3517893 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2022 International Conference on Management of Data |
| primary_location.landing_page_url | https://doi.org/10.1145/3514221.3517893 |
| publication_date | 2022-06-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2585424461, https://openalex.org/W2116470353, https://openalex.org/W6681779468, https://openalex.org/W2146492010, https://openalex.org/W2055385473, https://openalex.org/W2148417962, https://openalex.org/W2592257482, https://openalex.org/W1782046864, https://openalex.org/W3149027868, https://openalex.org/W3004538570, https://openalex.org/W2590972148, https://openalex.org/W1746637951, https://openalex.org/W2078686663, https://openalex.org/W2293307430, https://openalex.org/W2032311942, https://openalex.org/W1988991358, https://openalex.org/W2104498537, https://openalex.org/W2284810639, https://openalex.org/W4213071546, https://openalex.org/W1983721754, https://openalex.org/W2046861976, https://openalex.org/W2624220145, https://openalex.org/W2142759652, https://openalex.org/W3037819556, https://openalex.org/W2924926522, https://openalex.org/W2952695746, https://openalex.org/W2612777267, https://openalex.org/W2092954093, https://openalex.org/W2125349172, https://openalex.org/W2029792996, https://openalex.org/W2141651907, https://openalex.org/W2083150957, https://openalex.org/W2166563561, https://openalex.org/W2963668374, https://openalex.org/W2143238590, https://openalex.org/W2950969150, https://openalex.org/W2794645646, https://openalex.org/W2963066364, https://openalex.org/W2161956202, https://openalex.org/W1985718595, https://openalex.org/W2562676961, https://openalex.org/W2098207812, https://openalex.org/W2444247778, https://openalex.org/W2118105720, https://openalex.org/W2425142702, https://openalex.org/W2159654041, https://openalex.org/W1482080528, https://openalex.org/W2078970516, https://openalex.org/W2102023823, https://openalex.org/W2941009262, https://openalex.org/W1986909918, https://openalex.org/W6690630628, https://openalex.org/W2438284930, https://openalex.org/W1984196269, https://openalex.org/W2373263324, https://openalex.org/W2437172682, https://openalex.org/W6602175484, https://openalex.org/W2086639361, https://openalex.org/W627443184, https://openalex.org/W2502658919, https://openalex.org/W2144402047, https://openalex.org/W2143241596, https://openalex.org/W3101999497, https://openalex.org/W52840101, https://openalex.org/W3098289868, https://openalex.org/W2244843312 |
| referenced_works_count | 66 |
| abstract_inverted_index.A | 25 |
| abstract_inverted_index.a | 15, 76 |
| abstract_inverted_index.We | 73 |
| abstract_inverted_index.is | 12, 23, 49 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.on | 37, 42 |
| abstract_inverted_index.so | 91 |
| abstract_inverted_index.to | 64 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.has | 40 |
| abstract_inverted_index.how | 63 |
| abstract_inverted_index.may | 54 |
| abstract_inverted_index.not | 94 |
| abstract_inverted_index.the | 21 |
| abstract_inverted_index.two | 44 |
| abstract_inverted_index.This | 0, 60 |
| abstract_inverted_index.also | 74 |
| abstract_inverted_index.each | 10 |
| abstract_inverted_index.join | 4, 27 |
| abstract_inverted_index.long | 87 |
| abstract_inverted_index.over | 6 |
| abstract_inverted_index.that | 29 |
| abstract_inverted_index.they | 92 |
| abstract_inverted_index.time | 17 |
| abstract_inverted_index.when | 20 |
| abstract_inverted_index.with | 14, 86 |
| abstract_inverted_index.work | 36 |
| abstract_inverted_index.data, | 8 |
| abstract_inverted_index.joins | 39, 69 |
| abstract_inverted_index.large | 57 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.paper | 1, 61 |
| abstract_inverted_index.tuple | 11, 22 |
| abstract_inverted_index.valid | 16, 32, 89 |
| abstract_inverted_index.where | 9 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.enough | 88 |
| abstract_inverted_index.joins, | 81 |
| abstract_inverted_index.merely | 95 |
| abstract_inverted_index.useful | 77 |
| abstract_inverted_index.valid. | 24 |
| abstract_inverted_index.because | 52 |
| abstract_inverted_index.complex | 67 |
| abstract_inverted_index.durable | 79 |
| abstract_inverted_index.focused | 41 |
| abstract_inverted_index.further | 83 |
| abstract_inverted_index.joining | 30, 43 |
| abstract_inverted_index.process | 66 |
| abstract_inverted_index.queries | 5 |
| abstract_inverted_index.results | 85 |
| abstract_inverted_index.selects | 84 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.tuples' | 31 |
| abstract_inverted_index.Previous | 35 |
| abstract_inverted_index.consider | 75 |
| abstract_inverted_index.generate | 55 |
| abstract_inverted_index.interval | 18 |
| abstract_inverted_index.multiple | 71 |
| abstract_inverted_index.pairwise | 47 |
| abstract_inverted_index.requires | 28 |
| abstract_inverted_index.results. | 59 |
| abstract_inverted_index.temporal | 7, 26, 38, 68, 80 |
| abstract_inverted_index.intervals | 33, 90 |
| abstract_inverted_index.involving | 70 |
| abstract_inverted_index.multi-way | 3 |
| abstract_inverted_index.patterns. | 97 |
| abstract_inverted_index.transient | 96 |
| abstract_inverted_index.associated | 13 |
| abstract_inverted_index.extension, | 78 |
| abstract_inverted_index.indicating | 19 |
| abstract_inverted_index.intersect. | 34 |
| abstract_inverted_index.processing | 48 |
| abstract_inverted_index.relations, | 45 |
| abstract_inverted_index.relations. | 72 |
| abstract_inverted_index.efficiently | 65 |
| abstract_inverted_index.inefficient | 51 |
| abstract_inverted_index.intermediate | 58 |
| abstract_inverted_index.investigates | 62 |
| abstract_inverted_index.unnecessarily | 56 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.70349386 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |