Computing Vertex and Edge Connectivity of Graphs Embedded with Crossings Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.00586
Vertex connectivity and edge connectivity are fundamental concepts in graph theory that have been widely studied from both structural and algorithmic perspectives. The focus of this paper is on computing these two parameters for graphs embedded on the plane with crossings. For planar graphs -- which can be embedded on the plane without any crossings -- it has long been known that vertex and edge connectivity can be computed in linear time. Recently, the algorithm for vertex connectivity was extended from planar graphs to 1-plane graphs (where each edge is crossed at most once) without $\times$-crossings -- these are crossings whose endpoints induce a matching. The key insight, for both these classes of graphs, is that any two vertices/edges of a minimum vertex/edge cut have small face-distance (distance measured by number of faces) in the embedding. In this paper, we attempt at a comprehensive generalization of this idea to a wider class of graphs embedded on the plane. Our method works for all those embedded graphs where every pair of crossing edges is connected by a path whose vertices and edges have a small face-distance from the crossing point. Important examples of such graphs include optimal 2-planar and optimal 3-planar graphs, $d$-map graphs, $d$-framed graphs, graphs with bounded crossing number, and $k$-plane graphs with bounded number of $\times$-crossings. For all these graph classes, we get a linear-time algorithm for computing vertex and edge connectivity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400325795
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400325795Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.00586Digital Object Identifier
- Title
-
Computing Vertex and Edge Connectivity of Graphs Embedded with CrossingsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-30Full publication date if available
- Authors
-
Thérèse Biedl, Prosenjit Bose, Karthik MuraliList of authors in order
- Landing page
-
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24Direct OA link when available
- Concepts
-
Parameterized complexity, Vertex (graph theory), Enhanced Data Rates for GSM Evolution, Algorithm, Combinatorics, Computer science, Mathematics, Graph, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400325795 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.00586 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.00586 |
| ids.openalex | https://openalex.org/W4400325795 |
| fwci | |
| type | preprint |
| title | Computing Vertex and Edge Connectivity of Graphs Embedded with Crossings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10829 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Interconnection Networks and Systems |
| topics[1].id | https://openalex.org/T10904 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1708 |
| topics[1].subfield.display_name | Hardware and Architecture |
| topics[1].display_name | Embedded Systems Design Techniques |
| topics[2].id | https://openalex.org/T12292 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Graph Theory and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165464430 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7445184588432312 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[0].display_name | Parameterized complexity |
| concepts[1].id | https://openalex.org/C80899671 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6008220911026001 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1304193 |
| concepts[1].display_name | Vertex (graph theory) |
| concepts[2].id | https://openalex.org/C162307627 |
| concepts[2].level | 2 |
| concepts[2].score | 0.585148811340332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[2].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5215159058570862 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45994871854782104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4597809910774231 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.34293612837791443 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.32329893112182617 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12422952055931091 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[0].score | 0.7445184588432312 |
| keywords[0].display_name | Parameterized complexity |
| keywords[1].id | https://openalex.org/keywords/vertex |
| keywords[1].score | 0.6008220911026001 |
| keywords[1].display_name | Vertex (graph theory) |
| keywords[2].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[2].score | 0.585148811340332 |
| keywords[2].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5215159058570862 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.45994871854782104 |
| keywords[4].display_name | Combinatorics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4597809910774231 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.34293612837791443 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.32329893112182617 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.12422952055931091 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:drops-oai.dagstuhl.de:21095 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402524 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| locations[0].source.host_organization | https://openalex.org/I2799853480 |
| locations[0].source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| locations[0].source.host_organization_lineage | https://openalex.org/I2799853480 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | InProceedings |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24 |
| locations[1].id | pmh:oai:arXiv.org:2407.00586 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2407.00586 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2407.00586 |
| locations[2].id | doi:10.48550/arxiv.2407.00586 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2407.00586 |
| locations[3].id | doi:10.4230/lipics.esa.2024.24 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407052059 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Dagstuhl Research Online Publication Server |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.4230/lipics.esa.2024.24 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038712987 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9003-3783 |
| authorships[0].author.display_name | Thérèse Biedl |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biedl, Therese |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013674788 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8906-0573 |
| authorships[1].author.display_name | Prosenjit Bose |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bose, Prosenjit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112881407 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-3985-3609 |
| authorships[2].author.display_name | Karthik Murali |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Murali, Karthik |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-06T00:00:00 |
| display_name | Computing Vertex and Edge Connectivity of Graphs Embedded with Crossings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10829 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Interconnection Networks and Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2051058708, https://openalex.org/W1494268238, https://openalex.org/W154868527, https://openalex.org/W1983207144, https://openalex.org/W2490706771, https://openalex.org/W2480116122, https://openalex.org/W4255576661, https://openalex.org/W1516574938, https://openalex.org/W3111310291 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:drops-oai.dagstuhl.de:21095 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402524 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| best_oa_location.source.host_organization | https://openalex.org/I2799853480 |
| best_oa_location.source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2799853480 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | InProceedings |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24 |
| primary_location.id | pmh:oai:drops-oai.dagstuhl.de:21095 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402524 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| primary_location.source.host_organization | https://openalex.org/I2799853480 |
| primary_location.source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| primary_location.source.host_organization_lineage | https://openalex.org/I2799853480 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | InProceedings |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.24 |
| publication_date | 2024-06-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 103, 120, 142, 149, 175, 182, 225 |
| abstract_inverted_index.-- | 44, 55, 96 |
| abstract_inverted_index.In | 136 |
| abstract_inverted_index.at | 91, 141 |
| abstract_inverted_index.be | 47, 67 |
| abstract_inverted_index.by | 129, 174 |
| abstract_inverted_index.in | 8, 69, 133 |
| abstract_inverted_index.is | 27, 89, 114, 172 |
| abstract_inverted_index.it | 56 |
| abstract_inverted_index.of | 24, 112, 119, 131, 145, 152, 169, 191, 216 |
| abstract_inverted_index.on | 28, 36, 49, 155 |
| abstract_inverted_index.to | 83, 148 |
| abstract_inverted_index.we | 139, 223 |
| abstract_inverted_index.For | 41, 218 |
| abstract_inverted_index.Our | 158 |
| abstract_inverted_index.The | 22, 105 |
| abstract_inverted_index.all | 162, 219 |
| abstract_inverted_index.and | 2, 19, 63, 179, 197, 210, 231 |
| abstract_inverted_index.any | 53, 116 |
| abstract_inverted_index.are | 5, 98 |
| abstract_inverted_index.can | 46, 66 |
| abstract_inverted_index.cut | 123 |
| abstract_inverted_index.for | 33, 75, 108, 161, 228 |
| abstract_inverted_index.get | 224 |
| abstract_inverted_index.has | 57 |
| abstract_inverted_index.key | 106 |
| abstract_inverted_index.the | 37, 50, 73, 134, 156, 186 |
| abstract_inverted_index.two | 31, 117 |
| abstract_inverted_index.was | 78 |
| abstract_inverted_index.been | 13, 59 |
| abstract_inverted_index.both | 17, 109 |
| abstract_inverted_index.each | 87 |
| abstract_inverted_index.edge | 3, 64, 88, 232 |
| abstract_inverted_index.from | 16, 80, 185 |
| abstract_inverted_index.have | 12, 124, 181 |
| abstract_inverted_index.idea | 147 |
| abstract_inverted_index.long | 58 |
| abstract_inverted_index.most | 92 |
| abstract_inverted_index.pair | 168 |
| abstract_inverted_index.path | 176 |
| abstract_inverted_index.such | 192 |
| abstract_inverted_index.that | 11, 61, 115 |
| abstract_inverted_index.this | 25, 137, 146 |
| abstract_inverted_index.with | 39, 206, 213 |
| abstract_inverted_index.class | 151 |
| abstract_inverted_index.edges | 171, 180 |
| abstract_inverted_index.every | 167 |
| abstract_inverted_index.focus | 23 |
| abstract_inverted_index.graph | 9, 221 |
| abstract_inverted_index.known | 60 |
| abstract_inverted_index.once) | 93 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.plane | 38, 51 |
| abstract_inverted_index.small | 125, 183 |
| abstract_inverted_index.these | 30, 97, 110, 220 |
| abstract_inverted_index.those | 163 |
| abstract_inverted_index.time. | 71 |
| abstract_inverted_index.where | 166 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.whose | 100, 177 |
| abstract_inverted_index.wider | 150 |
| abstract_inverted_index.works | 160 |
| abstract_inverted_index.(where | 86 |
| abstract_inverted_index.Vertex | 0 |
| abstract_inverted_index.faces) | 132 |
| abstract_inverted_index.graphs | 34, 43, 82, 85, 153, 165, 193, 205, 212 |
| abstract_inverted_index.induce | 102 |
| abstract_inverted_index.linear | 70 |
| abstract_inverted_index.method | 159 |
| abstract_inverted_index.number | 130, 215 |
| abstract_inverted_index.paper, | 138 |
| abstract_inverted_index.planar | 42, 81 |
| abstract_inverted_index.plane. | 157 |
| abstract_inverted_index.point. | 188 |
| abstract_inverted_index.theory | 10 |
| abstract_inverted_index.vertex | 62, 76, 230 |
| abstract_inverted_index.widely | 14 |
| abstract_inverted_index.$d$-map | 201 |
| abstract_inverted_index.1-plane | 84 |
| abstract_inverted_index.attempt | 140 |
| abstract_inverted_index.bounded | 207, 214 |
| abstract_inverted_index.classes | 111 |
| abstract_inverted_index.crossed | 90 |
| abstract_inverted_index.graphs, | 113, 200, 202, 204 |
| abstract_inverted_index.include | 194 |
| abstract_inverted_index.minimum | 121 |
| abstract_inverted_index.number, | 209 |
| abstract_inverted_index.optimal | 195, 198 |
| abstract_inverted_index.studied | 15 |
| abstract_inverted_index.without | 52, 94 |
| abstract_inverted_index.2-planar | 196 |
| abstract_inverted_index.3-planar | 199 |
| abstract_inverted_index.classes, | 222 |
| abstract_inverted_index.computed | 68 |
| abstract_inverted_index.concepts | 7 |
| abstract_inverted_index.crossing | 170, 187, 208 |
| abstract_inverted_index.embedded | 35, 48, 154, 164 |
| abstract_inverted_index.examples | 190 |
| abstract_inverted_index.extended | 79 |
| abstract_inverted_index.insight, | 107 |
| abstract_inverted_index.measured | 128 |
| abstract_inverted_index.vertices | 178 |
| abstract_inverted_index.$k$-plane | 211 |
| abstract_inverted_index.(distance | 127 |
| abstract_inverted_index.Important | 189 |
| abstract_inverted_index.Recently, | 72 |
| abstract_inverted_index.algorithm | 74, 227 |
| abstract_inverted_index.computing | 29, 229 |
| abstract_inverted_index.connected | 173 |
| abstract_inverted_index.crossings | 54, 99 |
| abstract_inverted_index.endpoints | 101 |
| abstract_inverted_index.matching. | 104 |
| abstract_inverted_index.$d$-framed | 203 |
| abstract_inverted_index.crossings. | 40 |
| abstract_inverted_index.embedding. | 135 |
| abstract_inverted_index.parameters | 32 |
| abstract_inverted_index.structural | 18 |
| abstract_inverted_index.algorithmic | 20 |
| abstract_inverted_index.fundamental | 6 |
| abstract_inverted_index.linear-time | 226 |
| abstract_inverted_index.vertex/edge | 122 |
| abstract_inverted_index.connectivity | 1, 4, 65, 77 |
| abstract_inverted_index.comprehensive | 143 |
| abstract_inverted_index.connectivity. | 233 |
| abstract_inverted_index.face-distance | 126, 184 |
| abstract_inverted_index.perspectives. | 21 |
| abstract_inverted_index.generalization | 144 |
| abstract_inverted_index.vertices/edges | 118 |
| abstract_inverted_index.$\times$-crossings | 95 |
| abstract_inverted_index.$\times$-crossings. | 217 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |