Comuniqa : Exploring Large Language Models for improving speaking skills Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.15595
In this paper, we investigate the potential of Large Language Models (LLMs) to improve English speaking skills. This is particularly relevant in countries like India, where English is crucial for academic, professional, and personal communication but remains a non-native language for many. Traditional methods for enhancing speaking skills often rely on human experts, which can be limited in terms of scalability, accessibility, and affordability. Recent advancements in Artificial Intelligence (AI) offer promising solutions to overcome these limitations. We propose Comuniqa, a novel LLM-based system designed to enhance English speaking skills. We adopt a human-centric evaluation approach, comparing Comuniqa with the feedback and instructions provided by human experts. In our evaluation, we divide the participants in three groups: those who use LLM-based system for improving speaking skills, those guided by human experts for the same task and those who utilize both the LLM-based system as well as the human experts. Using surveys, interviews, and actual study sessions, we provide a detailed perspective on the effectiveness of different learning modalities. Our preliminary findings suggest that while LLM-based systems have commendable accuracy, they lack human-level cognitive capabilities, both in terms of accuracy and empathy. Nevertheless, Comuniqa represents a significant step towards achieving Sustainable Development Goal 4: Quality Education by providing a valuable learning tool for individuals who may not have access to human experts for improving their speaking skills.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.15595
- https://arxiv.org/pdf/2401.15595
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391376262
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391376262Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.15595Digital Object Identifier
- Title
-
Comuniqa : Exploring Large Language Models for improving speaking skillsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-28Full publication date if available
- Authors
-
Manas Mhasakar, Shikhar Sharma, Apurv Mehra, Utkarsh Venaik, Ujjwal Singhal, Dhruv Kumar, Kashish MittalList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.15595Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.15595Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.15595Direct OA link when available
- Concepts
-
Linguistics, Computer science, Psychology, Mathematics education, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391376262 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.15595 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.15595 |
| ids.openalex | https://openalex.org/W4391376262 |
| fwci | |
| type | preprint |
| title | Comuniqa : Exploring Large Language Models for improving speaking skills |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12031 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8495000004768372 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech and dialogue systems |
| topics[1].id | https://openalex.org/T11902 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7319999933242798 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41895202 |
| concepts[0].level | 1 |
| concepts[0].score | 0.4754492938518524 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[0].display_name | Linguistics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.43694087862968445 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4350195527076721 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C145420912 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3739519715309143 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[3].display_name | Mathematics education |
| concepts[4].id | https://openalex.org/C138885662 |
| concepts[4].level | 0 |
| concepts[4].score | 0.05570036172866821 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[4].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/linguistics |
| keywords[0].score | 0.4754492938518524 |
| keywords[0].display_name | Linguistics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.43694087862968445 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.4350195527076721 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/mathematics-education |
| keywords[3].score | 0.3739519715309143 |
| keywords[3].display_name | Mathematics education |
| keywords[4].id | https://openalex.org/keywords/philosophy |
| keywords[4].score | 0.05570036172866821 |
| keywords[4].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.15595 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.15595 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.15595 |
| locations[1].id | doi:10.48550/arxiv.2401.15595 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.15595 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093826546 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8609-5189 |
| authorships[0].author.display_name | Manas Mhasakar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mhasakar, Manas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032287649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9008-2315 |
| authorships[1].author.display_name | Shikhar Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharma, Shikhar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108786884 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Apurv Mehra |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mehra, Apurv |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035471805 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2561-1353 |
| authorships[3].author.display_name | Utkarsh Venaik |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Venaik, Utkarsh |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5092958359 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-6389-1170 |
| authorships[4].author.display_name | Ujjwal Singhal |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Singhal, Ujjwal |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5027859418 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2586-9397 |
| authorships[5].author.display_name | Dhruv Kumar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kumar, Dhruv |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5025715576 |
| authorships[6].author.orcid | https://orcid.org/0009-0000-2835-3797 |
| authorships[6].author.display_name | Kashish Mittal |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mittal, Kashish |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.15595 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comuniqa : Exploring Large Language Models for improving speaking skills |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12031 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8495000004768372 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech and dialogue systems |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655, https://openalex.org/W2359140296 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.15595 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.15595 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.15595 |
| primary_location.id | pmh:oai:arXiv.org:2401.15595 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.15595 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.15595 |
| publication_date | 2024-01-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 80, 92, 158, 194, 207 |
| abstract_inverted_index.4: | 202 |
| abstract_inverted_index.In | 0, 107 |
| abstract_inverted_index.We | 77, 90 |
| abstract_inverted_index.as | 143, 145 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.by | 104, 128, 205 |
| abstract_inverted_index.in | 21, 57, 66, 114, 185 |
| abstract_inverted_index.is | 18, 27 |
| abstract_inverted_index.of | 7, 59, 164, 187 |
| abstract_inverted_index.on | 50, 161 |
| abstract_inverted_index.to | 12, 73, 85, 218 |
| abstract_inverted_index.we | 3, 110, 156 |
| abstract_inverted_index.Our | 168 |
| abstract_inverted_index.and | 32, 62, 101, 135, 152, 189 |
| abstract_inverted_index.but | 35 |
| abstract_inverted_index.can | 54 |
| abstract_inverted_index.for | 29, 40, 44, 122, 131, 211, 221 |
| abstract_inverted_index.may | 214 |
| abstract_inverted_index.not | 215 |
| abstract_inverted_index.our | 108 |
| abstract_inverted_index.the | 5, 99, 112, 132, 140, 146, 162 |
| abstract_inverted_index.use | 119 |
| abstract_inverted_index.who | 118, 137, 213 |
| abstract_inverted_index.(AI) | 69 |
| abstract_inverted_index.Goal | 201 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.both | 139, 184 |
| abstract_inverted_index.have | 176, 216 |
| abstract_inverted_index.lack | 180 |
| abstract_inverted_index.like | 23 |
| abstract_inverted_index.rely | 49 |
| abstract_inverted_index.same | 133 |
| abstract_inverted_index.step | 196 |
| abstract_inverted_index.task | 134 |
| abstract_inverted_index.that | 172 |
| abstract_inverted_index.they | 179 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.tool | 210 |
| abstract_inverted_index.well | 144 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.Large | 8 |
| abstract_inverted_index.Using | 149 |
| abstract_inverted_index.adopt | 91 |
| abstract_inverted_index.human | 51, 105, 129, 147, 219 |
| abstract_inverted_index.many. | 41 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.offer | 70 |
| abstract_inverted_index.often | 48 |
| abstract_inverted_index.study | 154 |
| abstract_inverted_index.terms | 58, 186 |
| abstract_inverted_index.their | 223 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.those | 117, 126, 136 |
| abstract_inverted_index.three | 115 |
| abstract_inverted_index.where | 25 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.while | 173 |
| abstract_inverted_index.(LLMs) | 11 |
| abstract_inverted_index.India, | 24 |
| abstract_inverted_index.Models | 10 |
| abstract_inverted_index.Recent | 64 |
| abstract_inverted_index.access | 217 |
| abstract_inverted_index.actual | 153 |
| abstract_inverted_index.divide | 111 |
| abstract_inverted_index.guided | 127 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.skills | 47 |
| abstract_inverted_index.system | 83, 121, 142 |
| abstract_inverted_index.English | 14, 26, 87 |
| abstract_inverted_index.Quality | 203 |
| abstract_inverted_index.crucial | 28 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.experts | 130, 220 |
| abstract_inverted_index.groups: | 116 |
| abstract_inverted_index.improve | 13 |
| abstract_inverted_index.limited | 56 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.provide | 157 |
| abstract_inverted_index.remains | 36 |
| abstract_inverted_index.skills, | 125 |
| abstract_inverted_index.skills. | 16, 89, 225 |
| abstract_inverted_index.suggest | 171 |
| abstract_inverted_index.systems | 175 |
| abstract_inverted_index.towards | 197 |
| abstract_inverted_index.utilize | 138 |
| abstract_inverted_index.Comuniqa | 97, 192 |
| abstract_inverted_index.Language | 9 |
| abstract_inverted_index.accuracy | 188 |
| abstract_inverted_index.designed | 84 |
| abstract_inverted_index.detailed | 159 |
| abstract_inverted_index.empathy. | 190 |
| abstract_inverted_index.experts, | 52 |
| abstract_inverted_index.experts. | 106, 148 |
| abstract_inverted_index.feedback | 100 |
| abstract_inverted_index.findings | 170 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.learning | 166, 209 |
| abstract_inverted_index.overcome | 74 |
| abstract_inverted_index.personal | 33 |
| abstract_inverted_index.provided | 103 |
| abstract_inverted_index.relevant | 20 |
| abstract_inverted_index.speaking | 15, 46, 88, 124, 224 |
| abstract_inverted_index.surveys, | 150 |
| abstract_inverted_index.valuable | 208 |
| abstract_inverted_index.Comuniqa, | 79 |
| abstract_inverted_index.Education | 204 |
| abstract_inverted_index.LLM-based | 82, 120, 141, 174 |
| abstract_inverted_index.academic, | 30 |
| abstract_inverted_index.accuracy, | 178 |
| abstract_inverted_index.achieving | 198 |
| abstract_inverted_index.approach, | 95 |
| abstract_inverted_index.cognitive | 182 |
| abstract_inverted_index.comparing | 96 |
| abstract_inverted_index.countries | 22 |
| abstract_inverted_index.different | 165 |
| abstract_inverted_index.enhancing | 45 |
| abstract_inverted_index.improving | 123, 222 |
| abstract_inverted_index.potential | 6 |
| abstract_inverted_index.promising | 71 |
| abstract_inverted_index.providing | 206 |
| abstract_inverted_index.sessions, | 155 |
| abstract_inverted_index.solutions | 72 |
| abstract_inverted_index.Artificial | 67 |
| abstract_inverted_index.evaluation | 94 |
| abstract_inverted_index.non-native | 38 |
| abstract_inverted_index.represents | 193 |
| abstract_inverted_index.Development | 200 |
| abstract_inverted_index.Sustainable | 199 |
| abstract_inverted_index.Traditional | 42 |
| abstract_inverted_index.commendable | 177 |
| abstract_inverted_index.evaluation, | 109 |
| abstract_inverted_index.human-level | 181 |
| abstract_inverted_index.individuals | 212 |
| abstract_inverted_index.interviews, | 151 |
| abstract_inverted_index.investigate | 4 |
| abstract_inverted_index.modalities. | 167 |
| abstract_inverted_index.perspective | 160 |
| abstract_inverted_index.preliminary | 169 |
| abstract_inverted_index.significant | 195 |
| abstract_inverted_index.Intelligence | 68 |
| abstract_inverted_index.advancements | 65 |
| abstract_inverted_index.instructions | 102 |
| abstract_inverted_index.limitations. | 76 |
| abstract_inverted_index.participants | 113 |
| abstract_inverted_index.particularly | 19 |
| abstract_inverted_index.scalability, | 60 |
| abstract_inverted_index.Nevertheless, | 191 |
| abstract_inverted_index.capabilities, | 183 |
| abstract_inverted_index.communication | 34 |
| abstract_inverted_index.effectiveness | 163 |
| abstract_inverted_index.human-centric | 93 |
| abstract_inverted_index.professional, | 31 |
| abstract_inverted_index.accessibility, | 61 |
| abstract_inverted_index.affordability. | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |