concrete: Targeted Estimation of Survival and Competing Risks in Continuous Time Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.19197
This article introduces the R package concrete, which implements a recently developed targeted maximum likelihood estimator (TMLE) for the cause-specific absolute risks of time-to-event outcomes measured in continuous time. Cross-validated Super Learner machine learning ensembles are used to estimate propensity scores and conditional cause-specific hazards, which are then targeted to produce robust and efficient plug-in estimates of the effects of static or dynamic interventions on a binary treatment given at baseline quantified as risk differences or risk ratios. Influence curve-based asymptotic inference is provided for TMLE estimates and simultaneous confidence bands can be computed for target estimands spanning multiple multiple times or events. In this paper we review the one-step continuous-time TMLE methodology as it is situated in an overarching causal inference workflow, describe its implementation, and demonstrate the use of the package on the PBC dataset.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.19197
- https://arxiv.org/pdf/2310.19197
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388093247
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388093247Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.19197Digital Object Identifier
- Title
-
concrete: Targeted Estimation of Survival and Competing Risks in Continuous TimeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-29Full publication date if available
- Authors
-
David Chen, Helene C. W. Rytgaard, Edwin Fong, Jens M. Tarp, Maya Petersen, Mark J. van der Laan, Thomas Alexander GerdsList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.19197Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.19197Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.19197Direct OA link when available
- Concepts
-
Estimator, Inference, Causal inference, Computer science, Workflow, R package, Confidence interval, Econometrics, Statistics, Machine learning, Artificial intelligence, Mathematics, Database, Computational scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388093247 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.19197 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.19197 |
| ids.openalex | https://openalex.org/W4388093247 |
| fwci | |
| type | preprint |
| title | concrete: Targeted Estimation of Survival and Competing Risks in Continuous Time |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9440000057220459 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10804 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9415000081062317 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Health Systems, Economic Evaluations, Quality of Life |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6404942274093628 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.627288818359375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C158600405 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6128734350204468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[2].display_name | Causal inference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5930809378623962 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C177212765 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5275554060935974 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[4].display_name | Workflow |
| concepts[5].id | https://openalex.org/C2984074130 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4875492453575134 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q73539779 |
| concepts[5].display_name | R package |
| concepts[6].id | https://openalex.org/C44249647 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43416208028793335 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[6].display_name | Confidence interval |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.394450843334198 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3659079670906067 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.355705589056015 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.27190670371055603 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20001554489135742 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C459310 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[13].display_name | Computational science |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.6404942274093628 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.627288818359375 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/causal-inference |
| keywords[2].score | 0.6128734350204468 |
| keywords[2].display_name | Causal inference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5930809378623962 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/workflow |
| keywords[4].score | 0.5275554060935974 |
| keywords[4].display_name | Workflow |
| keywords[5].id | https://openalex.org/keywords/r-package |
| keywords[5].score | 0.4875492453575134 |
| keywords[5].display_name | R package |
| keywords[6].id | https://openalex.org/keywords/confidence-interval |
| keywords[6].score | 0.43416208028793335 |
| keywords[6].display_name | Confidence interval |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.394450843334198 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3659079670906067 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.355705589056015 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.27190670371055603 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.20001554489135742 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.19197 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.19197 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.19197 |
| locations[1].id | doi:10.48550/arxiv.2310.19197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.19197 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066123077 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9413-8152 |
| authorships[0].author.display_name | David Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, David |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030194359 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2096-9823 |
| authorships[1].author.display_name | Helene C. W. Rytgaard |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rytgaard, Helene C. W. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020934862 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1687-6803 |
| authorships[2].author.display_name | Edwin Fong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fong, Edwin C. H. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103889753 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jens M. Tarp |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tarp, Jens M. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5068971702 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5505-153X |
| authorships[4].author.display_name | Maya Petersen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Petersen, Maya L. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5110130449 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mark J. van der Laan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | van der Laan, Mark J. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5088993988 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5955-816X |
| authorships[6].author.display_name | Thomas Alexander Gerds |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Gerds, Thomas A. |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.19197 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | concrete: Targeted Estimation of Survival and Competing Risks in Continuous Time |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W4255934811, https://openalex.org/W4287880334, https://openalex.org/W2465382974, https://openalex.org/W2010229520 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.19197 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.19197 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.19197 |
| primary_location.id | pmh:oai:arXiv.org:2310.19197 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.19197 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.19197 |
| publication_date | 2023-10-29 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.R | 4 |
| abstract_inverted_index.a | 9, 65 |
| abstract_inverted_index.In | 103 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.as | 72, 113 |
| abstract_inverted_index.at | 69 |
| abstract_inverted_index.be | 92 |
| abstract_inverted_index.in | 26, 117 |
| abstract_inverted_index.is | 82, 115 |
| abstract_inverted_index.it | 114 |
| abstract_inverted_index.of | 22, 56, 59, 130 |
| abstract_inverted_index.on | 64, 133 |
| abstract_inverted_index.or | 61, 75, 101 |
| abstract_inverted_index.to | 37, 49 |
| abstract_inverted_index.we | 106 |
| abstract_inverted_index.PBC | 135 |
| abstract_inverted_index.and | 41, 52, 87, 126 |
| abstract_inverted_index.are | 35, 46 |
| abstract_inverted_index.can | 91 |
| abstract_inverted_index.for | 17, 84, 94 |
| abstract_inverted_index.its | 124 |
| abstract_inverted_index.the | 3, 18, 57, 108, 128, 131, 134 |
| abstract_inverted_index.use | 129 |
| abstract_inverted_index.TMLE | 85, 111 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.risk | 73, 76 |
| abstract_inverted_index.then | 47 |
| abstract_inverted_index.this | 104 |
| abstract_inverted_index.used | 36 |
| abstract_inverted_index.Super | 30 |
| abstract_inverted_index.bands | 90 |
| abstract_inverted_index.given | 68 |
| abstract_inverted_index.paper | 105 |
| abstract_inverted_index.risks | 21 |
| abstract_inverted_index.time. | 28 |
| abstract_inverted_index.times | 100 |
| abstract_inverted_index.which | 7, 45 |
| abstract_inverted_index.(TMLE) | 16 |
| abstract_inverted_index.binary | 66 |
| abstract_inverted_index.causal | 120 |
| abstract_inverted_index.review | 107 |
| abstract_inverted_index.robust | 51 |
| abstract_inverted_index.scores | 40 |
| abstract_inverted_index.static | 60 |
| abstract_inverted_index.target | 95 |
| abstract_inverted_index.Learner | 31 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.dynamic | 62 |
| abstract_inverted_index.effects | 58 |
| abstract_inverted_index.events. | 102 |
| abstract_inverted_index.machine | 32 |
| abstract_inverted_index.maximum | 13 |
| abstract_inverted_index.package | 5, 132 |
| abstract_inverted_index.plug-in | 54 |
| abstract_inverted_index.produce | 50 |
| abstract_inverted_index.ratios. | 77 |
| abstract_inverted_index.absolute | 20 |
| abstract_inverted_index.baseline | 70 |
| abstract_inverted_index.computed | 93 |
| abstract_inverted_index.dataset. | 136 |
| abstract_inverted_index.describe | 123 |
| abstract_inverted_index.estimate | 38 |
| abstract_inverted_index.hazards, | 44 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.measured | 25 |
| abstract_inverted_index.multiple | 98, 99 |
| abstract_inverted_index.one-step | 109 |
| abstract_inverted_index.outcomes | 24 |
| abstract_inverted_index.provided | 83 |
| abstract_inverted_index.recently | 10 |
| abstract_inverted_index.situated | 116 |
| abstract_inverted_index.spanning | 97 |
| abstract_inverted_index.targeted | 12, 48 |
| abstract_inverted_index.Influence | 78 |
| abstract_inverted_index.concrete, | 6 |
| abstract_inverted_index.developed | 11 |
| abstract_inverted_index.efficient | 53 |
| abstract_inverted_index.ensembles | 34 |
| abstract_inverted_index.estimands | 96 |
| abstract_inverted_index.estimates | 55, 86 |
| abstract_inverted_index.estimator | 15 |
| abstract_inverted_index.inference | 81, 121 |
| abstract_inverted_index.treatment | 67 |
| abstract_inverted_index.workflow, | 122 |
| abstract_inverted_index.asymptotic | 80 |
| abstract_inverted_index.confidence | 89 |
| abstract_inverted_index.continuous | 27 |
| abstract_inverted_index.implements | 8 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.likelihood | 14 |
| abstract_inverted_index.propensity | 39 |
| abstract_inverted_index.quantified | 71 |
| abstract_inverted_index.conditional | 42 |
| abstract_inverted_index.curve-based | 79 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.differences | 74 |
| abstract_inverted_index.methodology | 112 |
| abstract_inverted_index.overarching | 119 |
| abstract_inverted_index.simultaneous | 88 |
| abstract_inverted_index.interventions | 63 |
| abstract_inverted_index.time-to-event | 23 |
| abstract_inverted_index.cause-specific | 19, 43 |
| abstract_inverted_index.Cross-validated | 29 |
| abstract_inverted_index.continuous-time | 110 |
| abstract_inverted_index.implementation, | 125 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |