Confidence Intervals Based on the Modified Chi-Squared Distribution and its Applications in Medicine Article Swipe
Wu, Mulan
,
Xu Mengyu
,
Kim Dongyun
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.06476
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.06476
Small sample sizes in clinical studies arises from factors such as reduced costs, limited subject availability, and the rarity of studied conditions. This creates challenges for accurately calculating confidence intervals (CIs) using the normal distribution approximation. In this paper, we employ a quadratic-form based statistic, from which we derive more accurate confidence intervals, particularly for data with small sample sizes or proportions. Based on the study, we suggest reasonable values of sample sizes and proportions for the application of the quadratic method. Consequently, this method enhances the reliability of statistical inferences. We illustrate this method with real medical data from clinical trials.
Related Topics
Concepts
Confidence interval
Statistics
Mathematics
Sample size determination
Reliability (semiconductor)
CDF-based nonparametric confidence interval
Confidence distribution
Sample (material)
Robust confidence intervals
Distribution (mathematics)
Large sample
Quadratic equation
Binomial proportion confidence interval
Confidence region
Interval (graph theory)
Tolerance interval
Prediction interval
Credible interval
Normal distribution
Computer science
Coverage probability
Distribution fitting
Data mining
Statistical hypothesis testing
Interval estimation
Probability distribution
Metadata
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.06476
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7104867030
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7104867030Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.06476Digital Object Identifier
- Title
-
Confidence Intervals Based on the Modified Chi-Squared Distribution and its Applications in MedicineWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-09Full publication date if available
- Authors
-
Wu, Mulan, Xu Mengyu, Kim DongyunList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.06476Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.06476Direct OA link when available
- Concepts
-
Confidence interval, Statistics, Mathematics, Sample size determination, Reliability (semiconductor), CDF-based nonparametric confidence interval, Confidence distribution, Sample (material), Robust confidence intervals, Distribution (mathematics), Large sample, Quadratic equation, Binomial proportion confidence interval, Confidence region, Interval (graph theory), Tolerance interval, Prediction interval, Credible interval, Normal distribution, Computer science, Coverage probability, Distribution fitting, Data mining, Statistical hypothesis testing, Interval estimation, Probability distributionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7104867030 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.06476 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.06476 |
| ids.openalex | https://openalex.org/W7104867030 |
| fwci | |
| type | preprint |
| title | Confidence Intervals Based on the Modified Chi-Squared Distribution and its Applications in Medicine |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44249647 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7111172080039978 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[0].display_name | Confidence interval |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6977606415748596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5927670001983643 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C129848803 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5856715440750122 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[3].display_name | Sample size determination |
| concepts[4].id | https://openalex.org/C43214815 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5701631307601929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[4].display_name | Reliability (semiconductor) |
| concepts[5].id | https://openalex.org/C42468098 |
| concepts[5].level | 3 |
| concepts[5].score | 0.528266966342926 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5009921 |
| concepts[5].display_name | CDF-based nonparametric confidence interval |
| concepts[6].id | https://openalex.org/C13662513 |
| concepts[6].level | 3 |
| concepts[6].score | 0.48116061091423035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5160087 |
| concepts[6].display_name | Confidence distribution |
| concepts[7].id | https://openalex.org/C198531522 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4782711863517761 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[7].display_name | Sample (material) |
| concepts[8].id | https://openalex.org/C66520545 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42873573303222656 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7353538 |
| concepts[8].display_name | Robust confidence intervals |
| concepts[9].id | https://openalex.org/C110121322 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4239313304424286 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[9].display_name | Distribution (mathematics) |
| concepts[10].id | https://openalex.org/C3020318244 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3555467426776886 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4812187 |
| concepts[10].display_name | Large sample |
| concepts[11].id | https://openalex.org/C129844170 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3260233402252197 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q41299 |
| concepts[11].display_name | Quadratic equation |
| concepts[12].id | https://openalex.org/C18823086 |
| concepts[12].level | 4 |
| concepts[12].score | 0.3142898976802826 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1781424 |
| concepts[12].display_name | Binomial proportion confidence interval |
| concepts[13].id | https://openalex.org/C143380155 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3141285479068756 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5160088 |
| concepts[13].display_name | Confidence region |
| concepts[14].id | https://openalex.org/C2778067643 |
| concepts[14].level | 2 |
| concepts[14].score | 0.30746719241142273 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[14].display_name | Interval (graph theory) |
| concepts[15].id | https://openalex.org/C10590107 |
| concepts[15].level | 3 |
| concepts[15].score | 0.30284011363983154 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7814221 |
| concepts[15].display_name | Tolerance interval |
| concepts[16].id | https://openalex.org/C103402496 |
| concepts[16].level | 2 |
| concepts[16].score | 0.30205175280570984 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1106171 |
| concepts[16].display_name | Prediction interval |
| concepts[17].id | https://openalex.org/C121117317 |
| concepts[17].level | 3 |
| concepts[17].score | 0.3018340766429901 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4439221 |
| concepts[17].display_name | Credible interval |
| concepts[18].id | https://openalex.org/C102094743 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3009193539619446 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q133871 |
| concepts[18].display_name | Normal distribution |
| concepts[19].id | https://openalex.org/C41008148 |
| concepts[19].level | 0 |
| concepts[19].score | 0.2976490259170532 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[19].display_name | Computer science |
| concepts[20].id | https://openalex.org/C2776292839 |
| concepts[20].level | 3 |
| concepts[20].score | 0.29684245586395264 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5179217 |
| concepts[20].display_name | Coverage probability |
| concepts[21].id | https://openalex.org/C160947583 |
| concepts[21].level | 3 |
| concepts[21].score | 0.28501322865486145 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2083147 |
| concepts[21].display_name | Distribution fitting |
| concepts[22].id | https://openalex.org/C124101348 |
| concepts[22].level | 1 |
| concepts[22].score | 0.2814010679721832 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[22].display_name | Data mining |
| concepts[23].id | https://openalex.org/C87007009 |
| concepts[23].level | 2 |
| concepts[23].score | 0.27557241916656494 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[23].display_name | Statistical hypothesis testing |
| concepts[24].id | https://openalex.org/C205167067 |
| concepts[24].level | 3 |
| concepts[24].score | 0.27045226097106934 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q3300636 |
| concepts[24].display_name | Interval estimation |
| concepts[25].id | https://openalex.org/C149441793 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2625937759876251 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[25].display_name | Probability distribution |
| keywords[0].id | https://openalex.org/keywords/confidence-interval |
| keywords[0].score | 0.7111172080039978 |
| keywords[0].display_name | Confidence interval |
| keywords[1].id | https://openalex.org/keywords/sample-size-determination |
| keywords[1].score | 0.5856715440750122 |
| keywords[1].display_name | Sample size determination |
| keywords[2].id | https://openalex.org/keywords/reliability |
| keywords[2].score | 0.5701631307601929 |
| keywords[2].display_name | Reliability (semiconductor) |
| keywords[3].id | https://openalex.org/keywords/cdf-based-nonparametric-confidence-interval |
| keywords[3].score | 0.528266966342926 |
| keywords[3].display_name | CDF-based nonparametric confidence interval |
| keywords[4].id | https://openalex.org/keywords/confidence-distribution |
| keywords[4].score | 0.48116061091423035 |
| keywords[4].display_name | Confidence distribution |
| keywords[5].id | https://openalex.org/keywords/sample |
| keywords[5].score | 0.4782711863517761 |
| keywords[5].display_name | Sample (material) |
| keywords[6].id | https://openalex.org/keywords/robust-confidence-intervals |
| keywords[6].score | 0.42873573303222656 |
| keywords[6].display_name | Robust confidence intervals |
| keywords[7].id | https://openalex.org/keywords/distribution |
| keywords[7].score | 0.4239313304424286 |
| keywords[7].display_name | Distribution (mathematics) |
| keywords[8].id | https://openalex.org/keywords/large-sample |
| keywords[8].score | 0.3555467426776886 |
| keywords[8].display_name | Large sample |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.06476 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.06476 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wu, Mulan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Mulan |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A3005933377 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xu Mengyu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Mengyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2229497832 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kim Dongyun |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kim, Dongyun |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.06476 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-12T00:00:00 |
| display_name | Confidence Intervals Based on the Modified Chi-Squared Distribution and its Applications in Medicine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-12T23:15:19.534421 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.06476 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.06476 |
| primary_location.id | doi:10.48550/arxiv.2511.06476 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.06476 |
| publication_date | 2025-11-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.in | 3 |
| abstract_inverted_index.of | 19, 70, 78, 88 |
| abstract_inverted_index.on | 63 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.we | 39, 47, 66 |
| abstract_inverted_index.and | 16, 73 |
| abstract_inverted_index.for | 25, 54, 75 |
| abstract_inverted_index.the | 17, 32, 64, 76, 79, 86 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.data | 55, 98 |
| abstract_inverted_index.from | 7, 45, 99 |
| abstract_inverted_index.more | 49 |
| abstract_inverted_index.real | 96 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.this | 37, 83, 93 |
| abstract_inverted_index.with | 56, 95 |
| abstract_inverted_index.(CIs) | 30 |
| abstract_inverted_index.Based | 62 |
| abstract_inverted_index.Small | 0 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.sizes | 2, 59, 72 |
| abstract_inverted_index.small | 57 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.arises | 6 |
| abstract_inverted_index.costs, | 12 |
| abstract_inverted_index.derive | 48 |
| abstract_inverted_index.employ | 40 |
| abstract_inverted_index.method | 84, 94 |
| abstract_inverted_index.normal | 33 |
| abstract_inverted_index.paper, | 38 |
| abstract_inverted_index.rarity | 18 |
| abstract_inverted_index.sample | 1, 58, 71 |
| abstract_inverted_index.study, | 65 |
| abstract_inverted_index.values | 69 |
| abstract_inverted_index.creates | 23 |
| abstract_inverted_index.factors | 8 |
| abstract_inverted_index.limited | 13 |
| abstract_inverted_index.medical | 97 |
| abstract_inverted_index.method. | 81 |
| abstract_inverted_index.reduced | 11 |
| abstract_inverted_index.studied | 20 |
| abstract_inverted_index.studies | 5 |
| abstract_inverted_index.subject | 14 |
| abstract_inverted_index.suggest | 67 |
| abstract_inverted_index.trials. | 101 |
| abstract_inverted_index.accurate | 50 |
| abstract_inverted_index.clinical | 4, 100 |
| abstract_inverted_index.enhances | 85 |
| abstract_inverted_index.intervals | 29 |
| abstract_inverted_index.quadratic | 80 |
| abstract_inverted_index.accurately | 26 |
| abstract_inverted_index.challenges | 24 |
| abstract_inverted_index.confidence | 28, 51 |
| abstract_inverted_index.illustrate | 92 |
| abstract_inverted_index.intervals, | 52 |
| abstract_inverted_index.reasonable | 68 |
| abstract_inverted_index.statistic, | 44 |
| abstract_inverted_index.application | 77 |
| abstract_inverted_index.calculating | 27 |
| abstract_inverted_index.conditions. | 21 |
| abstract_inverted_index.inferences. | 90 |
| abstract_inverted_index.proportions | 74 |
| abstract_inverted_index.reliability | 87 |
| abstract_inverted_index.statistical | 89 |
| abstract_inverted_index.distribution | 34 |
| abstract_inverted_index.particularly | 53 |
| abstract_inverted_index.proportions. | 61 |
| abstract_inverted_index.Consequently, | 82 |
| abstract_inverted_index.availability, | 15 |
| abstract_inverted_index.approximation. | 35 |
| abstract_inverted_index.quadratic-form | 42 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |