Confidence intervals for robust estimates of measurement uncertainty Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1007/s00769-019-01417-4
Uncertainties arising at different stages of a measurement process can be estimated using analysis of variance (ANOVA) on duplicated measurements. In some cases, it is also desirable to calculate confidence intervals for these uncertainties. This can be achieved using probability models that assume the measurement data are normally distributed. However, it is often the case in practice that a set of otherwise normally distributed measurement values is contaminated by a small number of outlying values, which may have a disproportionate effect on the variances calculated using the ‘classical’ form of ANOVA. In this case, robust ANOVA methods are able to provide variance estimates that are much closer to the parameters of the underlying normal distributions. A method using bootstrapping to calculate confidence intervals from robust estimates of variances is proposed and evaluated and is shown to work well when the number of outlying values is small. The method has been implemented in a visual basic program.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00769-019-01417-4
- https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdf
- OA Status
- hybrid
- Cited By
- 20
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2994928544
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2994928544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00769-019-01417-4Digital Object Identifier
- Title
-
Confidence intervals for robust estimates of measurement uncertaintyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-04Full publication date if available
- Authors
-
Peter D. Rostron, Tom Fearn, Michael H. RamseyList of authors in order
- Landing page
-
https://doi.org/10.1007/s00769-019-01417-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdfDirect OA link when available
- Concepts
-
Bootstrapping (finance), Statistics, Confidence interval, Variance (accounting), Mathematics, Robust confidence intervals, Measurement uncertainty, Analysis of variance, Observational error, Variance components, Econometrics, Accounting, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2023: 4, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2994928544 |
|---|---|
| doi | https://doi.org/10.1007/s00769-019-01417-4 |
| ids.doi | https://doi.org/10.1007/s00769-019-01417-4 |
| ids.mag | 2994928544 |
| ids.openalex | https://openalex.org/W2994928544 |
| fwci | 2.031553 |
| type | article |
| title | Confidence intervals for robust estimates of measurement uncertainty |
| biblio.issue | 2 |
| biblio.volume | 25 |
| biblio.last_page | 119 |
| biblio.first_page | 107 |
| topics[0].id | https://openalex.org/T11890 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Scientific Measurement and Uncertainty Evaluation |
| topics[1].id | https://openalex.org/T11871 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Statistical Methods and Models |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list.value | 2690 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3490 |
| apc_paid.value | 2690 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3490 |
| concepts[0].id | https://openalex.org/C207609745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8752175569534302 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4944086 |
| concepts[0].display_name | Bootstrapping (finance) |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7767347693443298 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C44249647 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7333013415336609 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[2].display_name | Confidence interval |
| concepts[3].id | https://openalex.org/C196083921 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7094828486442566 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[3].display_name | Variance (accounting) |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5878661870956421 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C66520545 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5503664016723633 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353538 |
| concepts[5].display_name | Robust confidence intervals |
| concepts[6].id | https://openalex.org/C137209882 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5072893500328064 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1403517 |
| concepts[6].display_name | Measurement uncertainty |
| concepts[7].id | https://openalex.org/C99476002 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48338690400123596 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42297 |
| concepts[7].display_name | Analysis of variance |
| concepts[8].id | https://openalex.org/C19619285 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4731619954109192 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q196372 |
| concepts[8].display_name | Observational error |
| concepts[9].id | https://openalex.org/C3018076075 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42093873023986816 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[9].display_name | Variance components |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40151315927505493 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C121955636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07210502028465271 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[11].display_name | Accounting |
| concepts[12].id | https://openalex.org/C144133560 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[12].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/bootstrapping |
| keywords[0].score | 0.8752175569534302 |
| keywords[0].display_name | Bootstrapping (finance) |
| keywords[1].id | https://openalex.org/keywords/statistics |
| keywords[1].score | 0.7767347693443298 |
| keywords[1].display_name | Statistics |
| keywords[2].id | https://openalex.org/keywords/confidence-interval |
| keywords[2].score | 0.7333013415336609 |
| keywords[2].display_name | Confidence interval |
| keywords[3].id | https://openalex.org/keywords/variance |
| keywords[3].score | 0.7094828486442566 |
| keywords[3].display_name | Variance (accounting) |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5878661870956421 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/robust-confidence-intervals |
| keywords[5].score | 0.5503664016723633 |
| keywords[5].display_name | Robust confidence intervals |
| keywords[6].id | https://openalex.org/keywords/measurement-uncertainty |
| keywords[6].score | 0.5072893500328064 |
| keywords[6].display_name | Measurement uncertainty |
| keywords[7].id | https://openalex.org/keywords/analysis-of-variance |
| keywords[7].score | 0.48338690400123596 |
| keywords[7].display_name | Analysis of variance |
| keywords[8].id | https://openalex.org/keywords/observational-error |
| keywords[8].score | 0.4731619954109192 |
| keywords[8].display_name | Observational error |
| keywords[9].id | https://openalex.org/keywords/variance-components |
| keywords[9].score | 0.42093873023986816 |
| keywords[9].display_name | Variance components |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.40151315927505493 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/accounting |
| keywords[11].score | 0.07210502028465271 |
| keywords[11].display_name | Accounting |
| language | en |
| locations[0].id | doi:10.1007/s00769-019-01417-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S177975795 |
| locations[0].source.issn | 0949-1775, 1432-0517 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0949-1775 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Accreditation and Quality Assurance |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Accreditation and Quality Assurance |
| locations[0].landing_page_url | https://doi.org/10.1007/s00769-019-01417-4 |
| locations[1].id | pmh:oai:sro.sussex.ac.uk:88375 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400129 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Sussex Research Online (University of Sussex) |
| locations[1].source.host_organization | https://openalex.org/I162608824 |
| locations[1].source.host_organization_name | University of Sussex |
| locations[1].source.host_organization_lineage | https://openalex.org/I162608824 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://sro.sussex.ac.uk/id/eprint/88375/1/CIs_on_robust_estimates_of_uncertainty_V3_Clean.pdf |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005614446 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0230-0202 |
| authorships[0].author.display_name | Peter D. Rostron |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162608824 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK |
| authorships[0].institutions[0].id | https://openalex.org/I162608824 |
| authorships[0].institutions[0].ror | https://ror.org/00ayhx656 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162608824 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Sussex |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peter D. Rostron |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK |
| authorships[1].author.id | https://openalex.org/A5063785042 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2222-6601 |
| authorships[1].author.display_name | Tom Fearn |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistical Science, University College London, Gower Street, London, WC1E 6BT, UK |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tom Fearn |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistical Science, University College London, Gower Street, London, WC1E 6BT, UK |
| authorships[2].author.id | https://openalex.org/A5018878410 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2209-3001 |
| authorships[2].author.display_name | Michael H. Ramsey |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162608824 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK |
| authorships[2].institutions[0].id | https://openalex.org/I162608824 |
| authorships[2].institutions[0].ror | https://ror.org/00ayhx656 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162608824 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Sussex |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michael H. Ramsey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Confidence intervals for robust estimates of measurement uncertainty |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11890 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Scientific Measurement and Uncertainty Evaluation |
| related_works | https://openalex.org/W1958267198, https://openalex.org/W2220451197, https://openalex.org/W1505874630, https://openalex.org/W4321768889, https://openalex.org/W2370122455, https://openalex.org/W1600397729, https://openalex.org/W1825457241, https://openalex.org/W2360832559, https://openalex.org/W4284698423, https://openalex.org/W1989588780 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s00769-019-01417-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S177975795 |
| best_oa_location.source.issn | 0949-1775, 1432-0517 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0949-1775 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Accreditation and Quality Assurance |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Accreditation and Quality Assurance |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00769-019-01417-4 |
| primary_location.id | doi:10.1007/s00769-019-01417-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S177975795 |
| primary_location.source.issn | 0949-1775, 1432-0517 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0949-1775 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Accreditation and Quality Assurance |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00769-019-01417-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Accreditation and Quality Assurance |
| primary_location.landing_page_url | https://doi.org/10.1007/s00769-019-01417-4 |
| publication_date | 2020-02-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2566499825, https://openalex.org/W1993634913, https://openalex.org/W4236574025, https://openalex.org/W1995832210, https://openalex.org/W2138779355, https://openalex.org/W2130865043, https://openalex.org/W3106889297, https://openalex.org/W2009891346, https://openalex.org/W4242084858, https://openalex.org/W1995945562, https://openalex.org/W2008662004, https://openalex.org/W3137970571, https://openalex.org/W83773792, https://openalex.org/W2315214008 |
| referenced_works_count | 14 |
| abstract_inverted_index.A | 116 |
| abstract_inverted_index.a | 7, 59, 70, 79, 153 |
| abstract_inverted_index.In | 21, 92 |
| abstract_inverted_index.at | 3 |
| abstract_inverted_index.be | 11, 37 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 56, 152 |
| abstract_inverted_index.is | 25, 52, 67, 129, 134, 145 |
| abstract_inverted_index.it | 24, 51 |
| abstract_inverted_index.of | 6, 15, 61, 73, 90, 111, 127, 142 |
| abstract_inverted_index.on | 18, 82 |
| abstract_inverted_index.to | 28, 100, 108, 120, 136 |
| abstract_inverted_index.The | 147 |
| abstract_inverted_index.and | 131, 133 |
| abstract_inverted_index.are | 47, 98, 105 |
| abstract_inverted_index.can | 10, 36 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.has | 149 |
| abstract_inverted_index.may | 77 |
| abstract_inverted_index.set | 60 |
| abstract_inverted_index.the | 44, 54, 83, 87, 109, 112, 140 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.able | 99 |
| abstract_inverted_index.also | 26 |
| abstract_inverted_index.been | 150 |
| abstract_inverted_index.case | 55 |
| abstract_inverted_index.data | 46 |
| abstract_inverted_index.form | 89 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.have | 78 |
| abstract_inverted_index.much | 106 |
| abstract_inverted_index.some | 22 |
| abstract_inverted_index.that | 42, 58, 104 |
| abstract_inverted_index.this | 93 |
| abstract_inverted_index.well | 138 |
| abstract_inverted_index.when | 139 |
| abstract_inverted_index.work | 137 |
| abstract_inverted_index.ANOVA | 96 |
| abstract_inverted_index.basic | 155 |
| abstract_inverted_index.case, | 94 |
| abstract_inverted_index.often | 53 |
| abstract_inverted_index.shown | 135 |
| abstract_inverted_index.small | 71 |
| abstract_inverted_index.these | 33 |
| abstract_inverted_index.using | 13, 39, 86, 118 |
| abstract_inverted_index.which | 76 |
| abstract_inverted_index.ANOVA. | 91 |
| abstract_inverted_index.assume | 43 |
| abstract_inverted_index.cases, | 23 |
| abstract_inverted_index.closer | 107 |
| abstract_inverted_index.effect | 81 |
| abstract_inverted_index.method | 117, 148 |
| abstract_inverted_index.models | 41 |
| abstract_inverted_index.normal | 114 |
| abstract_inverted_index.number | 72, 141 |
| abstract_inverted_index.robust | 95, 125 |
| abstract_inverted_index.small. | 146 |
| abstract_inverted_index.stages | 5 |
| abstract_inverted_index.values | 66, 144 |
| abstract_inverted_index.visual | 154 |
| abstract_inverted_index.(ANOVA) | 17 |
| abstract_inverted_index.arising | 2 |
| abstract_inverted_index.methods | 97 |
| abstract_inverted_index.process | 9 |
| abstract_inverted_index.provide | 101 |
| abstract_inverted_index.values, | 75 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.achieved | 38 |
| abstract_inverted_index.analysis | 14 |
| abstract_inverted_index.normally | 48, 63 |
| abstract_inverted_index.outlying | 74, 143 |
| abstract_inverted_index.practice | 57 |
| abstract_inverted_index.program. | 156 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.variance | 16, 102 |
| abstract_inverted_index.calculate | 29, 121 |
| abstract_inverted_index.desirable | 27 |
| abstract_inverted_index.different | 4 |
| abstract_inverted_index.estimated | 12 |
| abstract_inverted_index.estimates | 103, 126 |
| abstract_inverted_index.evaluated | 132 |
| abstract_inverted_index.intervals | 31, 123 |
| abstract_inverted_index.otherwise | 62 |
| abstract_inverted_index.variances | 84, 128 |
| abstract_inverted_index.calculated | 85 |
| abstract_inverted_index.confidence | 30, 122 |
| abstract_inverted_index.duplicated | 19 |
| abstract_inverted_index.parameters | 110 |
| abstract_inverted_index.underlying | 113 |
| abstract_inverted_index.distributed | 64 |
| abstract_inverted_index.implemented | 151 |
| abstract_inverted_index.measurement | 8, 45, 65 |
| abstract_inverted_index.probability | 40 |
| abstract_inverted_index.contaminated | 68 |
| abstract_inverted_index.distributed. | 49 |
| abstract_inverted_index.Uncertainties | 1 |
| abstract_inverted_index.bootstrapping | 119 |
| abstract_inverted_index.measurements. | 20 |
| abstract_inverted_index.distributions. | 115 |
| abstract_inverted_index.uncertainties. | 34 |
| abstract_inverted_index.‘classical’ | 88 |
| abstract_inverted_index.disproportionate | 80 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.882263 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |