ConGCNet: Convex geometric constructive neural network for Industrial Internet of Things Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.jai.2024.07.004
The intersection of the Industrial Internet of Things (IIoT) and artificial intelligence (AI) has garnered ever-increasing attention and research interest. Nevertheless, the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution. Taking advantage of the lightweight constructive neural network (LightGCNet) in developing fast learner models for IIoT, a convex geometric constructive neural network with a low-complexity control strategy, namely, ConGCNet, is proposed in this article via convex optimization and matrix theory, which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet. Firstly, a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process. Secondly, a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate. Finally, the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method. Simulation results, including four benchmark datasets and the real-world ore grinding process, demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jai.2024.07.004
- OA Status
- diamond
- Cited By
- 4
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400849744
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400849744Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jai.2024.07.004Digital Object Identifier
- Title
-
ConGCNet: Convex geometric constructive neural network for Industrial Internet of ThingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-20Full publication date if available
- Authors
-
Jing Nan, Wei Dai, Chau Yuen, Jinliang DingList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jai.2024.07.004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jai.2024.07.004Direct OA link when available
- Concepts
-
Computer science, Constructive, Mathematical optimization, Artificial neural network, Computational complexity theory, Benchmark (surveying), Convergence (economics), Rate of convergence, Convex optimization, Piecewise, Process (computing), Artificial intelligence, Regular polygon, Algorithm, Mathematics, Economics, Economic growth, Geodesy, Geometry, Geography, Computer network, Mathematical analysis, Channel (broadcasting), Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400849744 |
|---|---|
| doi | https://doi.org/10.1016/j.jai.2024.07.004 |
| ids.doi | https://doi.org/10.1016/j.jai.2024.07.004 |
| ids.openalex | https://openalex.org/W4400849744 |
| fwci | 2.5551142 |
| type | article |
| title | ConGCNet: Convex geometric constructive neural network for Industrial Internet of Things |
| awards[0].id | https://openalex.org/G6840337290 |
| awards[0].funder_id | https://openalex.org/F4320322725 |
| awards[0].display_name | |
| awards[0].funder_award_id | 202306420127 |
| awards[0].funder_display_name | China Scholarship Council |
| awards[1].id | https://openalex.org/G214723977 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62373361 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1765971304 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2022YFB3304700 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 3 |
| biblio.volume | 3 |
| biblio.last_page | 175 |
| biblio.first_page | 169 |
| topics[0].id | https://openalex.org/T12676 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and ELM |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321916 |
| funders[1].ror | https://ror.org/023z3dm33 |
| funders[1].display_name | State Scholarships Foundation |
| funders[2].id | https://openalex.org/F4320322725 |
| funders[2].ror | https://ror.org/04atp4p48 |
| funders[2].display_name | China Scholarship Council |
| funders[3].id | https://openalex.org/F4320335777 |
| funders[3].ror | |
| funders[3].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6747980713844299 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778701210 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6205023527145386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28130034 |
| concepts[1].display_name | Constructive |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5977383852005005 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5734304189682007 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C179799912 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4981422424316406 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[4].display_name | Computational complexity theory |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4807960093021393 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C2777303404 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4717085063457489 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[6].display_name | Convergence (economics) |
| concepts[7].id | https://openalex.org/C57869625 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4597899913787842 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[7].display_name | Rate of convergence |
| concepts[8].id | https://openalex.org/C157972887 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4536620080471039 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q463359 |
| concepts[8].display_name | Convex optimization |
| concepts[9].id | https://openalex.org/C164660894 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42565464973449707 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2037833 |
| concepts[9].display_name | Piecewise |
| concepts[10].id | https://openalex.org/C98045186 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42379194498062134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[10].display_name | Process (computing) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37016114592552185 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C112680207 |
| concepts[12].level | 2 |
| concepts[12].score | 0.32547426223754883 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[12].display_name | Regular polygon |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2189631462097168 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18473660945892334 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C31258907 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[20].display_name | Computer network |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C127162648 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[22].display_name | Channel (broadcasting) |
| concepts[23].id | https://openalex.org/C111919701 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[23].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6747980713844299 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/constructive |
| keywords[1].score | 0.6205023527145386 |
| keywords[1].display_name | Constructive |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5977383852005005 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5734304189682007 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/computational-complexity-theory |
| keywords[4].score | 0.4981422424316406 |
| keywords[4].display_name | Computational complexity theory |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.4807960093021393 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/convergence |
| keywords[6].score | 0.4717085063457489 |
| keywords[6].display_name | Convergence (economics) |
| keywords[7].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[7].score | 0.4597899913787842 |
| keywords[7].display_name | Rate of convergence |
| keywords[8].id | https://openalex.org/keywords/convex-optimization |
| keywords[8].score | 0.4536620080471039 |
| keywords[8].display_name | Convex optimization |
| keywords[9].id | https://openalex.org/keywords/piecewise |
| keywords[9].score | 0.42565464973449707 |
| keywords[9].display_name | Piecewise |
| keywords[10].id | https://openalex.org/keywords/process |
| keywords[10].score | 0.42379194498062134 |
| keywords[10].display_name | Process (computing) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.37016114592552185 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/regular-polygon |
| keywords[12].score | 0.32547426223754883 |
| keywords[12].display_name | Regular polygon |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.2189631462097168 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.18473660945892334 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.jai.2024.07.004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387285287 |
| locations[0].source.issn | 2949-8554 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2949-8554 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Automation and Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Automation and Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jai.2024.07.004 |
| locations[1].id | pmh:oai:doaj.org/article:d8a383d470c9420b9412f5dcce9eb2ae |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Automation and Intelligence, Vol 3, Iss 3, Pp 169-175 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/d8a383d470c9420b9412f5dcce9eb2ae |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5050361739 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3944-5616 |
| authorships[0].author.display_name | Jing Nan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | China University of Mining and Technology, Xuzhou 221116, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Nan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].author.id | https://openalex.org/A5085295698 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3057-7225 |
| authorships[1].author.display_name | Wei Dai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei Dai |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].author.id | https://openalex.org/A5060020877 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9307-2120 |
| authorships[2].author.display_name | Chau Yuen |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[2].affiliations[0].raw_affiliation_string | Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I172675005 |
| authorships[2].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Nanyang Technological University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chau Yuen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore |
| authorships[3].author.id | https://openalex.org/A5022740106 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[3].author.display_name | Jinliang Ding |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | Northeastern University, Shenyang, 110819, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jinliang Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Northeastern University, Shenyang, 110819, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jai.2024.07.004 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ConGCNet: Convex geometric constructive neural network for Industrial Internet of Things |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12676 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and ELM |
| related_works | https://openalex.org/W2377770720, https://openalex.org/W94411513, https://openalex.org/W4311883357, https://openalex.org/W2113626999, https://openalex.org/W160889949, https://openalex.org/W2197168648, https://openalex.org/W2364696089, https://openalex.org/W4300816516, https://openalex.org/W309910862, https://openalex.org/W2369004811 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jai.2024.07.004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387285287 |
| best_oa_location.source.issn | 2949-8554 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2949-8554 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Automation and Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Automation and Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jai.2024.07.004 |
| primary_location.id | doi:10.1016/j.jai.2024.07.004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387285287 |
| primary_location.source.issn | 2949-8554 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2949-8554 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Automation and Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Automation and Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jai.2024.07.004 |
| publication_date | 2024-07-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3194292616, https://openalex.org/W2995370638, https://openalex.org/W3209086794, https://openalex.org/W2787114603, https://openalex.org/W3112713116, https://openalex.org/W3159143330, https://openalex.org/W1678831586, https://openalex.org/W2889836481, https://openalex.org/W2734490561, https://openalex.org/W3115997015, https://openalex.org/W4312341739, https://openalex.org/W2116621978, https://openalex.org/W2117941247, https://openalex.org/W1986278072, https://openalex.org/W2116322539, https://openalex.org/W1671971767, https://openalex.org/W44821117, https://openalex.org/W2906686987, https://openalex.org/W4383752535, https://openalex.org/W4390717391, https://openalex.org/W2122040390 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 45, 64, 71, 103, 121 |
| abstract_inverted_index.AI | 37 |
| abstract_inverted_index.by | 147 |
| abstract_inverted_index.in | 57, 79, 98, 177 |
| abstract_inverted_index.is | 77, 107, 131, 145 |
| abstract_inverted_index.of | 2, 6, 28, 36, 50, 143 |
| abstract_inverted_index.on | 128 |
| abstract_inverted_index.to | 109, 133 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 9, 17, 31, 85, 93, 152, 164, 181 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.has | 13, 38 |
| abstract_inverted_index.not | 39 |
| abstract_inverted_index.ore | 167 |
| abstract_inverted_index.the | 3, 21, 24, 32, 51, 90, 95, 111, 115, 135, 139, 148, 165, 178, 183 |
| abstract_inverted_index.via | 82 |
| abstract_inverted_index.yet | 40 |
| abstract_inverted_index.(AI) | 12 |
| abstract_inverted_index.IIoT | 29 |
| abstract_inverted_index.been | 41 |
| abstract_inverted_index.fast | 59 |
| abstract_inverted_index.four | 161 |
| abstract_inverted_index.rate | 92 |
| abstract_inverted_index.that | 171 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.with | 44, 70, 100 |
| abstract_inverted_index.IIoT, | 63 |
| abstract_inverted_index.based | 127 |
| abstract_inverted_index.fully | 42 |
| abstract_inverted_index.novel | 122 |
| abstract_inverted_index.rate. | 137, 186 |
| abstract_inverted_index.which | 88 |
| abstract_inverted_index.(IIoT) | 8 |
| abstract_inverted_index.Taking | 48 |
| abstract_inverted_index.Things | 7 |
| abstract_inverted_index.convex | 65, 83, 129, 153 |
| abstract_inverted_index.during | 114 |
| abstract_inverted_index.hidden | 116 |
| abstract_inverted_index.matrix | 86 |
| abstract_inverted_index.method | 126 |
| abstract_inverted_index.models | 61 |
| abstract_inverted_index.nature | 27 |
| abstract_inverted_index.neural | 54, 68 |
| abstract_inverted_index.output | 123, 154 |
| abstract_inverted_index.proved | 146 |
| abstract_inverted_index.reduce | 110 |
| abstract_inverted_index.strict | 25 |
| abstract_inverted_index.article | 81 |
| abstract_inverted_index.between | 23 |
| abstract_inverted_index.control | 73, 105, 150 |
| abstract_inverted_index.demands | 35 |
| abstract_inverted_index.devices | 30 |
| abstract_inverted_index.dilemma | 22 |
| abstract_inverted_index.learner | 60 |
| abstract_inverted_index.method. | 157 |
| abstract_inverted_index.namely, | 75 |
| abstract_inverted_index.network | 55, 69 |
| abstract_inverted_index.process | 180 |
| abstract_inverted_index.reduces | 94, 174 |
| abstract_inverted_index.theory, | 87 |
| abstract_inverted_index.weights | 124, 155 |
| abstract_inverted_index.ConGCNet | 144, 172 |
| abstract_inverted_index.Finally, | 138 |
| abstract_inverted_index.Firstly, | 102 |
| abstract_inverted_index.Internet | 5 |
| abstract_inverted_index.datasets | 163 |
| abstract_inverted_index.enhances | 89 |
| abstract_inverted_index.garnered | 14 |
| abstract_inverted_index.grinding | 168 |
| abstract_inverted_index.improves | 182 |
| abstract_inverted_index.process, | 169 |
| abstract_inverted_index.process. | 119 |
| abstract_inverted_index.property | 142 |
| abstract_inverted_index.proposed | 78, 108, 132 |
| abstract_inverted_index.research | 18 |
| abstract_inverted_index.resource | 34 |
| abstract_inverted_index.results, | 159 |
| abstract_inverted_index.strategy | 106, 151 |
| abstract_inverted_index.training | 118 |
| abstract_inverted_index.ConGCNet, | 76 |
| abstract_inverted_index.Secondly, | 120 |
| abstract_inverted_index.addressed | 43 |
| abstract_inverted_index.advantage | 49 |
| abstract_inverted_index.attention | 16 |
| abstract_inverted_index.benchmark | 162 |
| abstract_inverted_index.evaluated | 125, 156 |
| abstract_inverted_index.extensive | 33 |
| abstract_inverted_index.geometric | 66 |
| abstract_inverted_index.guarantee | 134 |
| abstract_inverted_index.including | 160 |
| abstract_inverted_index.interest. | 19 |
| abstract_inverted_index.modelling | 179 |
| abstract_inverted_index.model’s | 184 |
| abstract_inverted_index.solution. | 47 |
| abstract_inverted_index.strategy, | 74 |
| abstract_inverted_index.universal | 140 |
| abstract_inverted_index.Industrial | 4 |
| abstract_inverted_index.Simulation | 158 |
| abstract_inverted_index.artificial | 10 |
| abstract_inverted_index.comparison | 99 |
| abstract_inverted_index.developing | 58 |
| abstract_inverted_index.parameters | 117 |
| abstract_inverted_index.real-world | 166 |
| abstract_inverted_index.LightGCNet. | 101 |
| abstract_inverted_index.consumption | 97, 113, 176 |
| abstract_inverted_index.convergence | 91, 136, 185 |
| abstract_inverted_index.demonstrate | 170 |
| abstract_inverted_index.effectively | 173 |
| abstract_inverted_index.lightweight | 52 |
| abstract_inverted_index.(LightGCNet) | 56 |
| abstract_inverted_index.constructive | 53, 67 |
| abstract_inverted_index.intelligence | 11 |
| abstract_inverted_index.intersection | 1 |
| abstract_inverted_index.optimization | 84, 130 |
| abstract_inverted_index.Nevertheless, | 20 |
| abstract_inverted_index.approximation | 141 |
| abstract_inverted_index.comprehensive | 46 |
| abstract_inverted_index.computational | 96, 112, 175 |
| abstract_inverted_index.low-complexity | 72, 104, 149 |
| abstract_inverted_index.ever-increasing | 15 |
| abstract_inverted_index.resource-constrained | 26 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5085295698 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I25757504 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.87475749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |