CoNO: Complex neural operator for continous dynamical physical systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1063/5.0254013
Neural operators extend data-driven models to map between infinite-dimensional functional spaces. While these operators perform effectively in either the time or frequency domain, their performance may be limited when applied to non-stationary spatial or temporal signals whose frequency characteristics change with time. Here, we introduce a Complex Neural Operator (CoNO) that parameterizes the integral kernel using fractional Fourier transform, better representing non-stationary signals in a complex-valued domain. Theoretically, we prove the universal approximation capability of CoNO. We perform an extensive empirical evaluation of CoNO on seven challenging partial differential equations, including regular grids, structured meshes, and point clouds. Empirically, CoNO consistently attains a state-of-the-art performance, showcasing an average relative gain of 10.9%. Furthermore, CoNO exhibits superior performance, outperforming all other models in additional tasks, such as zero-shot super-resolution and robustness to noise. CoNO also exhibits the ability to learn from small amounts of data—giving the same performance as the next best model with just 60% of the training data. Altogether, CoNO presents a robust and superior model for modeling continuous dynamical systems, providing a fillip to scientific machine learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0254013
- OA Status
- diamond
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409082042
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409082042Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0254013Digital Object Identifier
- Title
-
CoNO: Complex neural operator for continous dynamical physical systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-01Full publication date if available
- Authors
-
Karn Tiwari, N. M. Anoop Krishnan, Prathosh APList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0254013Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1063/5.0254013Direct OA link when available
- Concepts
-
Operator (biology), Artificial neural network, Neural system, Computer science, Control theory (sociology), Artificial intelligence, Psychology, Neuroscience, Chemistry, Control (management), Transcription factor, Biochemistry, Repressor, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409082042 |
|---|---|
| doi | https://doi.org/10.1063/5.0254013 |
| ids.doi | https://doi.org/10.1063/5.0254013 |
| ids.openalex | https://openalex.org/W4409082042 |
| fwci | 0.0 |
| type | article |
| title | CoNO: Complex neural operator for continous dynamical physical systems |
| biblio.issue | 2 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9757999777793884 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17020691 |
| concepts[0].level | 5 |
| concepts[0].score | 0.5536327958106995 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[0].display_name | Operator (biology) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4473702311515808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C2986949344 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4301604628562927 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9404 |
| concepts[2].display_name | Neural system |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3983163833618164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C47446073 |
| concepts[4].level | 3 |
| concepts[4].score | 0.3301030993461609 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[4].display_name | Control theory (sociology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.22555267810821533 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.10611289739608765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.08052709698677063 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.05689650774002075 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C2775924081 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0518212616443634 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[9].display_name | Control (management) |
| concepts[10].id | https://openalex.org/C86339819 |
| concepts[10].level | 3 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[10].display_name | Transcription factor |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| concepts[12].id | https://openalex.org/C158448853 |
| concepts[12].level | 4 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[12].display_name | Repressor |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/operator |
| keywords[0].score | 0.5536327958106995 |
| keywords[0].display_name | Operator (biology) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.4473702311515808 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/neural-system |
| keywords[2].score | 0.4301604628562927 |
| keywords[2].display_name | Neural system |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3983163833618164 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/control-theory |
| keywords[4].score | 0.3301030993461609 |
| keywords[4].display_name | Control theory (sociology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.22555267810821533 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.10611289739608765 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.08052709698677063 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.05689650774002075 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/control |
| keywords[9].score | 0.0518212616443634 |
| keywords[9].display_name | Control (management) |
| language | en |
| locations[0].id | doi:10.1063/5.0254013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387287287 |
| locations[0].source.issn | 2770-9019 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2770-9019 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | APL Machine Learning |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | APL Machine Learning |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0254013 |
| locations[1].id | pmh:oai:doaj.org/article:ca2b1166b96f4e6da6633071cbf2be5d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | APL Machine Learning, Vol 3, Iss 2, Pp 026101-026101-14 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/ca2b1166b96f4e6da6633071cbf2be5d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5111176489 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-4271-1240 |
| authorships[0].author.display_name | Karn Tiwari |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 1 , Bengaluru 560012, |
| authorships[0].institutions[0].id | https://openalex.org/I59270414 |
| authorships[0].institutions[0].ror | https://ror.org/04dese585 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karn Tiwari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 1 , Bengaluru 560012, |
| authorships[1].author.id | https://openalex.org/A5065129881 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1500-4947 |
| authorships[1].author.display_name | N. M. Anoop Krishnan |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[1].affiliations[0].raw_affiliation_string | Yardi School of Artificial Intelligence Indian Institute of Technology, Delhi 2 , New Delhi 110016, |
| authorships[1].institutions[0].id | https://openalex.org/I68891433 |
| authorships[1].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | N. M. Anoop Krishnan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Yardi School of Artificial Intelligence Indian Institute of Technology, Delhi 2 , New Delhi 110016, |
| authorships[2].author.id | https://openalex.org/A5074080229 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prathosh AP |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 1 , Bengaluru 560012, |
| authorships[2].institutions[0].id | https://openalex.org/I59270414 |
| authorships[2].institutions[0].ror | https://ror.org/04dese585 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Prathosh A. P. |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 1 , Bengaluru 560012, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1063/5.0254013 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CoNO: Complex neural operator for continous dynamical physical systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0254013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387287287 |
| best_oa_location.source.issn | 2770-9019 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2770-9019 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | APL Machine Learning |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | APL Machine Learning |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0254013 |
| primary_location.id | doi:10.1063/5.0254013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387287287 |
| primary_location.source.issn | 2770-9019 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2770-9019 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | APL Machine Learning |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | APL Machine Learning |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0254013 |
| publication_date | 2025-04-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3092923133, https://openalex.org/W4290855687, https://openalex.org/W4321376126, https://openalex.org/W4310269821, https://openalex.org/W4391679243, https://openalex.org/W3216608673, https://openalex.org/W4394937884, https://openalex.org/W4385059818, https://openalex.org/W2011952230, https://openalex.org/W4295683184, https://openalex.org/W1578621147, https://openalex.org/W2175402905, https://openalex.org/W2547718140, https://openalex.org/W2143572124, https://openalex.org/W2979786244, https://openalex.org/W4285429067, https://openalex.org/W3172643943, https://openalex.org/W4322759863, https://openalex.org/W2136106070, https://openalex.org/W2803921066, https://openalex.org/W3034133850, https://openalex.org/W2917871216, https://openalex.org/W4289654500, https://openalex.org/W2122787031, https://openalex.org/W2135858797, https://openalex.org/W2164177859, https://openalex.org/W2051137709, https://openalex.org/W4378768626, https://openalex.org/W1526708997, https://openalex.org/W2229484904, https://openalex.org/W4320342673, https://openalex.org/W4361807272, https://openalex.org/W2576915720, https://openalex.org/W3179130615, https://openalex.org/W2733421109, https://openalex.org/W3048137666, https://openalex.org/W2981627360, https://openalex.org/W3167860837, https://openalex.org/W2105737828, https://openalex.org/W4321277061, https://openalex.org/W2166500461, https://openalex.org/W3217481449, https://openalex.org/W4307478128, https://openalex.org/W148353664, https://openalex.org/W3186384563, https://openalex.org/W4311305958, https://openalex.org/W1901129140, https://openalex.org/W2194775991, https://openalex.org/W3138516171, https://openalex.org/W2991023341, https://openalex.org/W3197308578, https://openalex.org/W4229034759, https://openalex.org/W3202621745, https://openalex.org/W4399622598, https://openalex.org/W1522301498, https://openalex.org/W4408372376, https://openalex.org/W3042974430, https://openalex.org/W2626148257 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 45, 64, 102, 162, 173 |
| abstract_inverted_index.We | 76 |
| abstract_inverted_index.an | 78, 106 |
| abstract_inverted_index.as | 125, 147 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.in | 16, 63, 121 |
| abstract_inverted_index.of | 74, 82, 110, 142, 155 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.or | 20, 33 |
| abstract_inverted_index.to | 5, 30, 130, 137, 175 |
| abstract_inverted_index.we | 43, 68 |
| abstract_inverted_index.60% | 154 |
| abstract_inverted_index.all | 118 |
| abstract_inverted_index.and | 95, 128, 164 |
| abstract_inverted_index.for | 167 |
| abstract_inverted_index.map | 6 |
| abstract_inverted_index.may | 25 |
| abstract_inverted_index.the | 18, 52, 70, 135, 144, 148, 156 |
| abstract_inverted_index.CoNO | 83, 99, 113, 132, 160 |
| abstract_inverted_index.also | 133 |
| abstract_inverted_index.best | 150 |
| abstract_inverted_index.from | 139 |
| abstract_inverted_index.gain | 109 |
| abstract_inverted_index.just | 153 |
| abstract_inverted_index.next | 149 |
| abstract_inverted_index.same | 145 |
| abstract_inverted_index.such | 124 |
| abstract_inverted_index.that | 50 |
| abstract_inverted_index.time | 19 |
| abstract_inverted_index.when | 28 |
| abstract_inverted_index.with | 40, 152 |
| abstract_inverted_index.CoNO. | 75 |
| abstract_inverted_index.Here, | 42 |
| abstract_inverted_index.While | 11 |
| abstract_inverted_index.data. | 158 |
| abstract_inverted_index.learn | 138 |
| abstract_inverted_index.model | 151, 166 |
| abstract_inverted_index.other | 119 |
| abstract_inverted_index.point | 96 |
| abstract_inverted_index.prove | 69 |
| abstract_inverted_index.seven | 85 |
| abstract_inverted_index.small | 140 |
| abstract_inverted_index.their | 23 |
| abstract_inverted_index.these | 12 |
| abstract_inverted_index.time. | 41 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.whose | 36 |
| abstract_inverted_index.(CoNO) | 49 |
| abstract_inverted_index.10.9%. | 111 |
| abstract_inverted_index.Neural | 0, 47 |
| abstract_inverted_index.better | 59 |
| abstract_inverted_index.change | 39 |
| abstract_inverted_index.either | 17 |
| abstract_inverted_index.extend | 2 |
| abstract_inverted_index.fillip | 174 |
| abstract_inverted_index.grids, | 92 |
| abstract_inverted_index.kernel | 54 |
| abstract_inverted_index.models | 4, 120 |
| abstract_inverted_index.noise. | 131 |
| abstract_inverted_index.robust | 163 |
| abstract_inverted_index.tasks, | 123 |
| abstract_inverted_index.Complex | 46 |
| abstract_inverted_index.Fourier | 57 |
| abstract_inverted_index.ability | 136 |
| abstract_inverted_index.amounts | 141 |
| abstract_inverted_index.applied | 29 |
| abstract_inverted_index.attains | 101 |
| abstract_inverted_index.average | 107 |
| abstract_inverted_index.between | 7 |
| abstract_inverted_index.clouds. | 97 |
| abstract_inverted_index.domain, | 22 |
| abstract_inverted_index.domain. | 66 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.machine | 177 |
| abstract_inverted_index.meshes, | 94 |
| abstract_inverted_index.partial | 87 |
| abstract_inverted_index.perform | 14, 77 |
| abstract_inverted_index.regular | 91 |
| abstract_inverted_index.signals | 35, 62 |
| abstract_inverted_index.spaces. | 10 |
| abstract_inverted_index.spatial | 32 |
| abstract_inverted_index.Operator | 48 |
| abstract_inverted_index.exhibits | 114, 134 |
| abstract_inverted_index.integral | 53 |
| abstract_inverted_index.modeling | 168 |
| abstract_inverted_index.presents | 161 |
| abstract_inverted_index.relative | 108 |
| abstract_inverted_index.superior | 115, 165 |
| abstract_inverted_index.systems, | 171 |
| abstract_inverted_index.temporal | 34 |
| abstract_inverted_index.training | 157 |
| abstract_inverted_index.dynamical | 170 |
| abstract_inverted_index.empirical | 80 |
| abstract_inverted_index.extensive | 79 |
| abstract_inverted_index.frequency | 21, 37 |
| abstract_inverted_index.including | 90 |
| abstract_inverted_index.introduce | 44 |
| abstract_inverted_index.learning. | 178 |
| abstract_inverted_index.operators | 1, 13 |
| abstract_inverted_index.providing | 172 |
| abstract_inverted_index.universal | 71 |
| abstract_inverted_index.zero-shot | 126 |
| abstract_inverted_index.additional | 122 |
| abstract_inverted_index.capability | 73 |
| abstract_inverted_index.continuous | 169 |
| abstract_inverted_index.equations, | 89 |
| abstract_inverted_index.evaluation | 81 |
| abstract_inverted_index.fractional | 56 |
| abstract_inverted_index.functional | 9 |
| abstract_inverted_index.robustness | 129 |
| abstract_inverted_index.scientific | 176 |
| abstract_inverted_index.showcasing | 105 |
| abstract_inverted_index.structured | 93 |
| abstract_inverted_index.transform, | 58 |
| abstract_inverted_index.Altogether, | 159 |
| abstract_inverted_index.challenging | 86 |
| abstract_inverted_index.data-driven | 3 |
| abstract_inverted_index.effectively | 15 |
| abstract_inverted_index.performance | 24, 146 |
| abstract_inverted_index.Empirically, | 98 |
| abstract_inverted_index.Furthermore, | 112 |
| abstract_inverted_index.consistently | 100 |
| abstract_inverted_index.differential | 88 |
| abstract_inverted_index.performance, | 104, 116 |
| abstract_inverted_index.representing | 60 |
| abstract_inverted_index.approximation | 72 |
| abstract_inverted_index.data—giving | 143 |
| abstract_inverted_index.outperforming | 117 |
| abstract_inverted_index.parameterizes | 51 |
| abstract_inverted_index.Theoretically, | 67 |
| abstract_inverted_index.complex-valued | 65 |
| abstract_inverted_index.non-stationary | 31, 61 |
| abstract_inverted_index.characteristics | 38 |
| abstract_inverted_index.state-of-the-art | 103 |
| abstract_inverted_index.super-resolution | 127 |
| abstract_inverted_index.infinite-dimensional | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.04202236 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |