Conquering High Packet-Loss Erasure: MoE Swin Transformer-Based Video Semantic Communication Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.01205
Semantic communication with joint semantic-channel coding robustly transmits diverse data modalities but faces challenges in mitigating semantic information loss due to packet drops in packet-based systems. Under current protocols, packets with errors are discarded, preventing the receiver from utilizing erroneous semantic data for robust decoding. To address this issue, a packet-loss-resistant MoE Swin Transformer-based Video Semantic Communication (MSTVSC) system is proposed in this paper. Semantic vectors are encoded by MSTVSC and transmitted through upper-layer protocol packetization. To investigate the impact of the packetization, a theoretical analysis of the packetization strategy is provided. To mitigate the semantic loss caused by packet loss, a 3D CNN at the receiver recovers missing information using un-lost semantic data and an packet-loss mask matrix. Semantic-level interleaving is employed to reduce concentrated semantic loss from packet drops. To improve compression, a common-individual decomposition approach is adopted, with downsampling applied to individual information to minimize redundancy. The model is lightweighted for practical deployment. Extensive simulations and comparisons demonstrate strong performance, achieving an MS-SSIM greater than 0.6 and a PSNR exceeding 20 dB at a 90% packet loss rate.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.01205
- https://arxiv.org/pdf/2508.01205
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417098598
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417098598Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.01205Digital Object Identifier
- Title
-
Conquering High Packet-Loss Erasure: MoE Swin Transformer-Based Video Semantic CommunicationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-02Full publication date if available
- Authors
-
Chen Dong, Zhicheng Bao, Xiaodong Xu, Rui Meng, Ping ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.01205Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.01205Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.01205Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417098598 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.01205 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.01205 |
| ids.openalex | https://openalex.org/W4417098598 |
| fwci | |
| type | preprint |
| title | Conquering High Packet-Loss Erasure: MoE Swin Transformer-Based Video Semantic Communication |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.01205 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.01205 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.01205 |
| locations[1].id | doi:10.48550/arxiv.2508.01205 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.01205 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101492344 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3443-1453 |
| authorships[0].author.display_name | Chen Dong |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Dong, Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051705103 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2605-2007 |
| authorships[1].author.display_name | Zhicheng Bao |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bao, Zhicheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061030501 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4245-5989 |
| authorships[2].author.display_name | Xiaodong Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Xiaodong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023884578 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0486-1409 |
| authorships[3].author.display_name | Rui Meng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meng, Rui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100405787 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0269-104X |
| authorships[4].author.display_name | Ping Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Ping |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.01205 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Conquering High Packet-Loss Erasure: MoE Swin Transformer-Based Video Semantic Communication |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-08T09:52:09.977550 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.01205 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.01205 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.01205 |
| primary_location.id | pmh:oai:arXiv.org:2508.01205 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.01205 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.01205 |
| publication_date | 2025-08-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 83, 101, 134, 170, 176 |
| abstract_inverted_index.20 | 173 |
| abstract_inverted_index.3D | 102 |
| abstract_inverted_index.To | 45, 76, 92, 131 |
| abstract_inverted_index.an | 115, 164 |
| abstract_inverted_index.at | 104, 175 |
| abstract_inverted_index.by | 68, 98 |
| abstract_inverted_index.dB | 174 |
| abstract_inverted_index.in | 14, 23, 61 |
| abstract_inverted_index.is | 59, 90, 121, 138, 151 |
| abstract_inverted_index.of | 80, 86 |
| abstract_inverted_index.to | 20, 123, 143, 146 |
| abstract_inverted_index.0.6 | 168 |
| abstract_inverted_index.90% | 177 |
| abstract_inverted_index.CNN | 103 |
| abstract_inverted_index.MoE | 51 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.and | 70, 114, 158, 169 |
| abstract_inverted_index.are | 32, 66 |
| abstract_inverted_index.but | 11 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 42, 153 |
| abstract_inverted_index.the | 35, 78, 81, 87, 94, 105 |
| abstract_inverted_index.PSNR | 171 |
| abstract_inverted_index.Swin | 52 |
| abstract_inverted_index.data | 9, 41, 113 |
| abstract_inverted_index.from | 37, 128 |
| abstract_inverted_index.loss | 18, 96, 127, 179 |
| abstract_inverted_index.mask | 117 |
| abstract_inverted_index.than | 167 |
| abstract_inverted_index.this | 47, 62 |
| abstract_inverted_index.with | 2, 30, 140 |
| abstract_inverted_index.Under | 26 |
| abstract_inverted_index.Video | 54 |
| abstract_inverted_index.drops | 22 |
| abstract_inverted_index.faces | 12 |
| abstract_inverted_index.joint | 3 |
| abstract_inverted_index.loss, | 100 |
| abstract_inverted_index.model | 150 |
| abstract_inverted_index.rate. | 180 |
| abstract_inverted_index.using | 110 |
| abstract_inverted_index.MSTVSC | 69 |
| abstract_inverted_index.caused | 97 |
| abstract_inverted_index.coding | 5 |
| abstract_inverted_index.drops. | 130 |
| abstract_inverted_index.errors | 31 |
| abstract_inverted_index.impact | 79 |
| abstract_inverted_index.issue, | 48 |
| abstract_inverted_index.packet | 21, 99, 129, 178 |
| abstract_inverted_index.paper. | 63 |
| abstract_inverted_index.reduce | 124 |
| abstract_inverted_index.robust | 43 |
| abstract_inverted_index.strong | 161 |
| abstract_inverted_index.system | 58 |
| abstract_inverted_index.MS-SSIM | 165 |
| abstract_inverted_index.address | 46 |
| abstract_inverted_index.applied | 142 |
| abstract_inverted_index.current | 27 |
| abstract_inverted_index.diverse | 8 |
| abstract_inverted_index.encoded | 67 |
| abstract_inverted_index.greater | 166 |
| abstract_inverted_index.improve | 132 |
| abstract_inverted_index.matrix. | 118 |
| abstract_inverted_index.missing | 108 |
| abstract_inverted_index.packets | 29 |
| abstract_inverted_index.through | 72 |
| abstract_inverted_index.un-lost | 111 |
| abstract_inverted_index.vectors | 65 |
| abstract_inverted_index.(MSTVSC) | 57 |
| abstract_inverted_index.Semantic | 0, 55, 64 |
| abstract_inverted_index.adopted, | 139 |
| abstract_inverted_index.analysis | 85 |
| abstract_inverted_index.approach | 137 |
| abstract_inverted_index.employed | 122 |
| abstract_inverted_index.minimize | 147 |
| abstract_inverted_index.mitigate | 93 |
| abstract_inverted_index.proposed | 60 |
| abstract_inverted_index.protocol | 74 |
| abstract_inverted_index.receiver | 36, 106 |
| abstract_inverted_index.recovers | 107 |
| abstract_inverted_index.robustly | 6 |
| abstract_inverted_index.semantic | 16, 40, 95, 112, 126 |
| abstract_inverted_index.strategy | 89 |
| abstract_inverted_index.systems. | 25 |
| abstract_inverted_index.Extensive | 156 |
| abstract_inverted_index.achieving | 163 |
| abstract_inverted_index.decoding. | 44 |
| abstract_inverted_index.erroneous | 39 |
| abstract_inverted_index.exceeding | 172 |
| abstract_inverted_index.practical | 154 |
| abstract_inverted_index.provided. | 91 |
| abstract_inverted_index.transmits | 7 |
| abstract_inverted_index.utilizing | 38 |
| abstract_inverted_index.challenges | 13 |
| abstract_inverted_index.discarded, | 33 |
| abstract_inverted_index.individual | 144 |
| abstract_inverted_index.mitigating | 15 |
| abstract_inverted_index.modalities | 10 |
| abstract_inverted_index.preventing | 34 |
| abstract_inverted_index.protocols, | 28 |
| abstract_inverted_index.comparisons | 159 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.deployment. | 155 |
| abstract_inverted_index.information | 17, 109, 145 |
| abstract_inverted_index.investigate | 77 |
| abstract_inverted_index.packet-loss | 116 |
| abstract_inverted_index.redundancy. | 148 |
| abstract_inverted_index.simulations | 157 |
| abstract_inverted_index.theoretical | 84 |
| abstract_inverted_index.transmitted | 71 |
| abstract_inverted_index.upper-layer | 73 |
| abstract_inverted_index.compression, | 133 |
| abstract_inverted_index.concentrated | 125 |
| abstract_inverted_index.downsampling | 141 |
| abstract_inverted_index.interleaving | 120 |
| abstract_inverted_index.packet-based | 24 |
| abstract_inverted_index.performance, | 162 |
| abstract_inverted_index.Communication | 56 |
| abstract_inverted_index.communication | 1 |
| abstract_inverted_index.decomposition | 136 |
| abstract_inverted_index.lightweighted | 152 |
| abstract_inverted_index.packetization | 88 |
| abstract_inverted_index.Semantic-level | 119 |
| abstract_inverted_index.packetization, | 82 |
| abstract_inverted_index.packetization. | 75 |
| abstract_inverted_index.semantic-channel | 4 |
| abstract_inverted_index.Transformer-based | 53 |
| abstract_inverted_index.common-individual | 135 |
| abstract_inverted_index.packet-loss-resistant | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |