Consequences of ignoring group association in spatial capture–recapture analysis Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.2981/wlb.00649
Many models in population ecology, including spatial capture–recapture (SCR) models, assume that individuals are distributed and detected independently of one another. In reality, this is rarely the case – both antagonistic and gregarious relationships lead to non-independent spatial configurations, with territorial exclusion at one end of the spectrum and group-living at the other. Previous simulation studies suggest that grouping has limited impact on the outcome of SCR analyses. However, group associations entail not only spatial clustering of activity centers but also coordinated space use by group members, potentially impacting both ecological and observation processes underlying SCR analysis. We simulated SCR scenarios with different strengths of aggregation (clustering of individuals into groups with shared activity centers) and cohesion (synchronization of detection patterns of members of a group). We then fit SCR models to the simulated data sets and evaluated the effect of aggregation and cohesion on parameter estimates. Low to moderate aggregation and cohesion did not impact the bias and precision of estimates of density and the scale parameter of the detection function. However, non-independence between individuals led to high levels of overdispersion. Overdispersion strongly decreased the coverage of confidence intervals around parameter estimates, thereby increasing the probability of erroneous predictions. Our results indicate that SCR models are robust to moderate levels of aggregation and cohesion. Nonetheless, spatial dependence between individuals can lead to false inference. We recommend that practitioners 1) test for the presence of overdispersion in SCR data caused by aggregation and cohesion, and, if necessary, 2) correct their variance estimates using the overdispersion factor ĉ . Approaches for doing both are described in this paper. We also urge the development of SCR models that incorporate spatial associations between individuals not only to account for overdispersion but also to obtain quantitative information about social aspects of study populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2981/wlb.00649
- https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdf
- OA Status
- gold
- Cited By
- 63
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3011831975
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3011831975Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2981/wlb.00649Digital Object Identifier
- Title
-
Consequences of ignoring group association in spatial capture–recapture analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-17Full publication date if available
- Authors
-
Richard Bischof, Pierre Dupont, Cyril Milleret, Joseph Chipperfield, J. Andrew RoyleList of authors in order
- Landing page
-
https://doi.org/10.2981/wlb.00649Publisher landing page
- PDF URL
-
https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdfDirect OA link when available
- Concepts
-
Overdispersion, Group cohesiveness, Statistics, Econometrics, Cluster analysis, Inference, Cohesion (chemistry), Ecology, Population, Confidence interval, Mathematics, Computer science, Demography, Biology, Psychology, Social psychology, Artificial intelligence, Poisson distribution, Organic chemistry, Sociology, Chemistry, Count dataTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
63Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 8, 2023: 11, 2022: 19, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3011831975 |
|---|---|
| doi | https://doi.org/10.2981/wlb.00649 |
| ids.doi | https://doi.org/10.2981/wlb.00649 |
| ids.mag | 3011831975 |
| ids.openalex | https://openalex.org/W3011831975 |
| fwci | 6.64208579 |
| type | article |
| title | Consequences of ignoring group association in spatial capture–recapture analysis |
| biblio.issue | 1 |
| biblio.volume | 2020 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10199 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Wildlife Ecology and Conservation |
| topics[1].id | https://openalex.org/T11913 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Animal Ecology and Behavior Studies |
| topics[2].id | https://openalex.org/T10089 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Avian ecology and behavior |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C117236510 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8890143632888794 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7113620 |
| concepts[0].display_name | Overdispersion |
| concepts[1].id | https://openalex.org/C14641543 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6613203287124634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q553270 |
| concepts[1].display_name | Group cohesiveness |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6531610488891602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6273659467697144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5577003955841064 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5300970673561096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C104054115 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4970267117023468 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q216828 |
| concepts[6].display_name | Cohesion (chemistry) |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47382652759552 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C2908647359 |
| concepts[8].level | 2 |
| concepts[8].score | 0.438955694437027 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[8].display_name | Population |
| concepts[9].id | https://openalex.org/C44249647 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4108520746231079 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[9].display_name | Confidence interval |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3482361435890198 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3046603500843048 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C149923435 |
| concepts[12].level | 1 |
| concepts[12].score | 0.26457229256629944 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[12].display_name | Demography |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2235395908355713 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2220495641231537 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1694861352443695 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10603255033493042 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C100906024 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[17].display_name | Poisson distribution |
| concepts[18].id | https://openalex.org/C178790620 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[18].display_name | Organic chemistry |
| concepts[19].id | https://openalex.org/C144024400 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[19].display_name | Sociology |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C33643355 |
| concepts[21].level | 3 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[21].display_name | Count data |
| keywords[0].id | https://openalex.org/keywords/overdispersion |
| keywords[0].score | 0.8890143632888794 |
| keywords[0].display_name | Overdispersion |
| keywords[1].id | https://openalex.org/keywords/group-cohesiveness |
| keywords[1].score | 0.6613203287124634 |
| keywords[1].display_name | Group cohesiveness |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.6531610488891602 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.6273659467697144 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5577003955841064 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5300970673561096 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/cohesion |
| keywords[6].score | 0.4970267117023468 |
| keywords[6].display_name | Cohesion (chemistry) |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.47382652759552 |
| keywords[7].display_name | Ecology |
| keywords[8].id | https://openalex.org/keywords/population |
| keywords[8].score | 0.438955694437027 |
| keywords[8].display_name | Population |
| keywords[9].id | https://openalex.org/keywords/confidence-interval |
| keywords[9].score | 0.4108520746231079 |
| keywords[9].display_name | Confidence interval |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3482361435890198 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3046603500843048 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/demography |
| keywords[12].score | 0.26457229256629944 |
| keywords[12].display_name | Demography |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.2235395908355713 |
| keywords[13].display_name | Biology |
| keywords[14].id | https://openalex.org/keywords/psychology |
| keywords[14].score | 0.2220495641231537 |
| keywords[14].display_name | Psychology |
| keywords[15].id | https://openalex.org/keywords/social-psychology |
| keywords[15].score | 0.1694861352443695 |
| keywords[15].display_name | Social psychology |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.10603255033493042 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.2981/wlb.00649 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S175034139 |
| locations[0].source.issn | 0909-6396, 1903-220X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0909-6396 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Wildlife Biology |
| locations[0].source.host_organization | https://openalex.org/P4310320297 |
| locations[0].source.host_organization_name | BioOne |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320297 |
| locations[0].source.host_organization_lineage_names | BioOne |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Wildlife Biology |
| locations[0].landing_page_url | https://doi.org/10.2981/wlb.00649 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5043455911 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1267-9183 |
| authorships[0].author.display_name | Richard Bischof |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I54108979 |
| authorships[0].affiliations[0].raw_affiliation_string | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[0].institutions[0].id | https://openalex.org/I54108979 |
| authorships[0].institutions[0].ror | https://ror.org/04a1mvv97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I54108979 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | Norwegian University of Life Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Richard Bischof |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[1].author.id | https://openalex.org/A5026206972 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7438-7995 |
| authorships[1].author.display_name | Pierre Dupont |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I54108979 |
| authorships[1].affiliations[0].raw_affiliation_string | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[1].institutions[0].id | https://openalex.org/I54108979 |
| authorships[1].institutions[0].ror | https://ror.org/04a1mvv97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I54108979 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | Norwegian University of Life Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pierre Dupont |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[2].author.id | https://openalex.org/A5041799983 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8563-981X |
| authorships[2].author.display_name | Cyril Milleret |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I54108979 |
| authorships[2].affiliations[0].raw_affiliation_string | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[2].institutions[0].id | https://openalex.org/I54108979 |
| authorships[2].institutions[0].ror | https://ror.org/04a1mvv97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I54108979 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | Norwegian University of Life Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cyril Milleret |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[3].author.id | https://openalex.org/A5068283502 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3314-0846 |
| authorships[3].author.display_name | Joseph Chipperfield |
| authorships[3].affiliations[0].raw_affiliation_string | J. Chipperfield, Norwegian Inst. for Nature, Res., Bergen, Norway. – J. A. Royle, USGS Patuxent Wildlife Research Center, Laurel, MD, USA. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joseph Chipperfield |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | J. Chipperfield, Norwegian Inst. for Nature, Res., Bergen, Norway. – J. A. Royle, USGS Patuxent Wildlife Research Center, Laurel, MD, USA. |
| authorships[4].author.id | https://openalex.org/A5046643704 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3135-2167 |
| authorships[4].author.display_name | J. Andrew Royle |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I54108979 |
| authorships[4].affiliations[0].raw_affiliation_string | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| authorships[4].institutions[0].id | https://openalex.org/I54108979 |
| authorships[4].institutions[0].ror | https://ror.org/04a1mvv97 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I54108979 |
| authorships[4].institutions[0].country_code | NO |
| authorships[4].institutions[0].display_name | Norwegian University of Life Sciences |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | J. Andrew Royle |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | R. Bischof ✉ ([email protected]), P. Dupont and C. Milleret, Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Consequences of ignoring group association in spatial capture–recapture analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10199 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Wildlife Ecology and Conservation |
| related_works | https://openalex.org/W1969135428, https://openalex.org/W2001372775, https://openalex.org/W2027585331, https://openalex.org/W1481039507, https://openalex.org/W2525246515, https://openalex.org/W2381411542, https://openalex.org/W2398055119, https://openalex.org/W2469266883, https://openalex.org/W2253253207, https://openalex.org/W1765080143 |
| cited_by_count | 63 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 19 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2981/wlb.00649 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S175034139 |
| best_oa_location.source.issn | 0909-6396, 1903-220X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0909-6396 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Wildlife Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320297 |
| best_oa_location.source.host_organization_name | BioOne |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320297 |
| best_oa_location.source.host_organization_lineage_names | BioOne |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Wildlife Biology |
| best_oa_location.landing_page_url | https://doi.org/10.2981/wlb.00649 |
| primary_location.id | doi:10.2981/wlb.00649 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S175034139 |
| primary_location.source.issn | 0909-6396, 1903-220X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0909-6396 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Wildlife Biology |
| primary_location.source.host_organization | https://openalex.org/P4310320297 |
| primary_location.source.host_organization_name | BioOne |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320297 |
| primary_location.source.host_organization_lineage_names | BioOne |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bioone.org/journals/wildlife-biology/volume-2020/issue-1/wlb.00649/Consequences-of-ignoring-group-association-in-spatial-capturerecapture-analysis/10.2981/wlb.00649.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Wildlife Biology |
| primary_location.landing_page_url | https://doi.org/10.2981/wlb.00649 |
| publication_date | 2020-03-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1500794765, https://openalex.org/W2114075052, https://openalex.org/W2150009594, https://openalex.org/W2168456527, https://openalex.org/W2075825341, https://openalex.org/W2033662395, https://openalex.org/W4246103140, https://openalex.org/W2061173653, https://openalex.org/W1753120016, https://openalex.org/W2772382590, https://openalex.org/W2552685466, https://openalex.org/W1981118628, https://openalex.org/W1974126759, https://openalex.org/W2074703150, https://openalex.org/W2796539682, https://openalex.org/W1983347342, https://openalex.org/W2744232208, https://openalex.org/W6629515849, https://openalex.org/W2057388287, https://openalex.org/W2049194842, https://openalex.org/W2086252641, https://openalex.org/W2009363058, https://openalex.org/W2549538244, https://openalex.org/W2905782795, https://openalex.org/W2484039423, https://openalex.org/W1889832964, https://openalex.org/W2047495451, https://openalex.org/W2797838290, https://openalex.org/W1966509781, https://openalex.org/W2803265677, https://openalex.org/W2578392859, https://openalex.org/W2521312965, https://openalex.org/W1493250639, https://openalex.org/W2593937136, https://openalex.org/W2475752340, https://openalex.org/W2953129820, https://openalex.org/W4254546262, https://openalex.org/W2111890968 |
| referenced_works_count | 38 |
| abstract_inverted_index.. | 257 |
| abstract_inverted_index.a | 124 |
| abstract_inverted_index.1) | 229 |
| abstract_inverted_index.2) | 247 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 97, 126, 225, 267 |
| abstract_inverted_index.at | 42, 50 |
| abstract_inverted_index.by | 84, 240 |
| abstract_inverted_index.if | 245 |
| abstract_inverted_index.in | 2, 236, 264 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 18, 45, 65, 76, 104, 107, 118, 121, 123, 140, 160, 162, 168, 180, 187, 197, 211, 234, 272, 296 |
| abstract_inverted_index.on | 62, 144 |
| abstract_inverted_index.to | 35, 131, 148, 177, 208, 222, 283, 289 |
| abstract_inverted_index.ĉ | 256 |
| abstract_inverted_index.Low | 147 |
| abstract_inverted_index.Our | 200 |
| abstract_inverted_index.SCR | 66, 95, 99, 129, 204, 237, 273 |
| abstract_inverted_index.and | 15, 31, 48, 91, 115, 136, 142, 151, 158, 164, 213, 242 |
| abstract_inverted_index.are | 13, 206, 262 |
| abstract_inverted_index.but | 79, 287 |
| abstract_inverted_index.can | 220 |
| abstract_inverted_index.did | 153 |
| abstract_inverted_index.end | 44 |
| abstract_inverted_index.fit | 128 |
| abstract_inverted_index.for | 231, 259, 285 |
| abstract_inverted_index.has | 59 |
| abstract_inverted_index.led | 176 |
| abstract_inverted_index.not | 72, 154, 281 |
| abstract_inverted_index.one | 19, 43 |
| abstract_inverted_index.the | 26, 46, 51, 63, 132, 138, 156, 165, 169, 185, 195, 232, 253, 270 |
| abstract_inverted_index.use | 83 |
| abstract_inverted_index.– | 28 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.also | 80, 268, 288 |
| abstract_inverted_index.and, | 244 |
| abstract_inverted_index.bias | 157 |
| abstract_inverted_index.both | 29, 89, 261 |
| abstract_inverted_index.case | 27 |
| abstract_inverted_index.data | 134, 238 |
| abstract_inverted_index.high | 178 |
| abstract_inverted_index.into | 109 |
| abstract_inverted_index.lead | 34, 221 |
| abstract_inverted_index.only | 73, 282 |
| abstract_inverted_index.sets | 135 |
| abstract_inverted_index.test | 230 |
| abstract_inverted_index.that | 11, 57, 203, 227, 275 |
| abstract_inverted_index.then | 127 |
| abstract_inverted_index.this | 23, 265 |
| abstract_inverted_index.urge | 269 |
| abstract_inverted_index.with | 39, 101, 111 |
| abstract_inverted_index.(SCR) | 8 |
| abstract_inverted_index.about | 293 |
| abstract_inverted_index.doing | 260 |
| abstract_inverted_index.false | 223 |
| abstract_inverted_index.group | 69, 85 |
| abstract_inverted_index.scale | 166 |
| abstract_inverted_index.space | 82 |
| abstract_inverted_index.study | 297 |
| abstract_inverted_index.their | 249 |
| abstract_inverted_index.using | 252 |
| abstract_inverted_index.around | 190 |
| abstract_inverted_index.assume | 10 |
| abstract_inverted_index.caused | 239 |
| abstract_inverted_index.effect | 139 |
| abstract_inverted_index.entail | 71 |
| abstract_inverted_index.factor | 255 |
| abstract_inverted_index.groups | 110 |
| abstract_inverted_index.impact | 61, 155 |
| abstract_inverted_index.levels | 179, 210 |
| abstract_inverted_index.models | 1, 130, 205, 274 |
| abstract_inverted_index.obtain | 290 |
| abstract_inverted_index.other. | 52 |
| abstract_inverted_index.paper. | 266 |
| abstract_inverted_index.rarely | 25 |
| abstract_inverted_index.robust | 207 |
| abstract_inverted_index.shared | 112 |
| abstract_inverted_index.social | 294 |
| abstract_inverted_index.account | 284 |
| abstract_inverted_index.aspects | 295 |
| abstract_inverted_index.between | 174, 218, 279 |
| abstract_inverted_index.centers | 78 |
| abstract_inverted_index.correct | 248 |
| abstract_inverted_index.density | 163 |
| abstract_inverted_index.group). | 125 |
| abstract_inverted_index.limited | 60 |
| abstract_inverted_index.members | 122 |
| abstract_inverted_index.models, | 9 |
| abstract_inverted_index.outcome | 64 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.spatial | 6, 37, 74, 216, 277 |
| abstract_inverted_index.studies | 55 |
| abstract_inverted_index.suggest | 56 |
| abstract_inverted_index.thereby | 193 |
| abstract_inverted_index.However, | 68, 172 |
| abstract_inverted_index.Previous | 53 |
| abstract_inverted_index.activity | 77, 113 |
| abstract_inverted_index.another. | 20 |
| abstract_inverted_index.centers) | 114 |
| abstract_inverted_index.cohesion | 116, 143, 152 |
| abstract_inverted_index.coverage | 186 |
| abstract_inverted_index.detected | 16 |
| abstract_inverted_index.ecology, | 4 |
| abstract_inverted_index.grouping | 58 |
| abstract_inverted_index.indicate | 202 |
| abstract_inverted_index.members, | 86 |
| abstract_inverted_index.moderate | 149, 209 |
| abstract_inverted_index.patterns | 120 |
| abstract_inverted_index.presence | 233 |
| abstract_inverted_index.reality, | 22 |
| abstract_inverted_index.spectrum | 47 |
| abstract_inverted_index.strongly | 183 |
| abstract_inverted_index.variance | 250 |
| abstract_inverted_index.analyses. | 67 |
| abstract_inverted_index.analysis. | 96 |
| abstract_inverted_index.cohesion, | 243 |
| abstract_inverted_index.cohesion. | 214 |
| abstract_inverted_index.decreased | 184 |
| abstract_inverted_index.described | 263 |
| abstract_inverted_index.detection | 119, 170 |
| abstract_inverted_index.different | 102 |
| abstract_inverted_index.erroneous | 198 |
| abstract_inverted_index.estimates | 161, 251 |
| abstract_inverted_index.evaluated | 137 |
| abstract_inverted_index.exclusion | 41 |
| abstract_inverted_index.function. | 171 |
| abstract_inverted_index.impacting | 88 |
| abstract_inverted_index.including | 5 |
| abstract_inverted_index.intervals | 189 |
| abstract_inverted_index.parameter | 145, 167, 191 |
| abstract_inverted_index.precision | 159 |
| abstract_inverted_index.processes | 93 |
| abstract_inverted_index.recommend | 226 |
| abstract_inverted_index.scenarios | 100 |
| abstract_inverted_index.simulated | 98, 133 |
| abstract_inverted_index.strengths | 103 |
| abstract_inverted_index.Approaches | 258 |
| abstract_inverted_index.clustering | 75 |
| abstract_inverted_index.confidence | 188 |
| abstract_inverted_index.dependence | 217 |
| abstract_inverted_index.ecological | 90 |
| abstract_inverted_index.estimates, | 192 |
| abstract_inverted_index.estimates. | 146 |
| abstract_inverted_index.gregarious | 32 |
| abstract_inverted_index.increasing | 194 |
| abstract_inverted_index.inference. | 224 |
| abstract_inverted_index.necessary, | 246 |
| abstract_inverted_index.population | 3 |
| abstract_inverted_index.simulation | 54 |
| abstract_inverted_index.underlying | 94 |
| abstract_inverted_index.(clustering | 106 |
| abstract_inverted_index.aggregation | 105, 141, 150, 212, 241 |
| abstract_inverted_index.coordinated | 81 |
| abstract_inverted_index.development | 271 |
| abstract_inverted_index.distributed | 14 |
| abstract_inverted_index.incorporate | 276 |
| abstract_inverted_index.individuals | 12, 108, 175, 219, 280 |
| abstract_inverted_index.information | 292 |
| abstract_inverted_index.observation | 92 |
| abstract_inverted_index.potentially | 87 |
| abstract_inverted_index.probability | 196 |
| abstract_inverted_index.territorial | 40 |
| abstract_inverted_index.Nonetheless, | 215 |
| abstract_inverted_index.antagonistic | 30 |
| abstract_inverted_index.associations | 70, 278 |
| abstract_inverted_index.group-living | 49 |
| abstract_inverted_index.populations. | 298 |
| abstract_inverted_index.predictions. | 199 |
| abstract_inverted_index.quantitative | 291 |
| abstract_inverted_index.independently | 17 |
| abstract_inverted_index.practitioners | 228 |
| abstract_inverted_index.relationships | 33 |
| abstract_inverted_index.Overdispersion | 182 |
| abstract_inverted_index.overdispersion | 235, 254, 286 |
| abstract_inverted_index.configurations, | 38 |
| abstract_inverted_index.non-independent | 36 |
| abstract_inverted_index.overdispersion. | 181 |
| abstract_inverted_index.(synchronization | 117 |
| abstract_inverted_index.non-independence | 173 |
| abstract_inverted_index.capture–recapture | 7 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.97470033 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |