Consequences of reduced sampling intensity for estimating population size of wolves in Scandinavia with spatial capture-recapture models Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.13140/rg.2.2.10543.07844
Every winter, the Scandinavian wolf population is surveyed using non-invasive genetic sampling (NGS) and snow-tracking to assess its annual status and trends. During 2017/18, search intensity and the proportion of samples genotyped was unusually high, resulting in more than 3 000 samples associated with 375 individuals. The boost in sampling was realized in part through intensified structured searches by the management authorities and in part by encouraging hunters and the general public to collect samples opportunistically. Such a high effort is not sustainable for long-term monitoring, but presents an opportunity to evaluate the consequences of reduced sampling intensity. We artificially thinned the number of genetic samples available and evaluated the consequences of thinning on population size estimates derived with spatial capture-recapture (SCR) models.\n\nThe original aim of this study was to identify sampling strategies (sampling intensity and spatial configuration) that increased the cost-efficiency of wolf monitoring in Scandinavia for population size estimation using SCR. However, discovery of an apparent bias in population size estimates in response to sample reduction led to a shift in focus to identifying the possible causes of this pattern.\n\nWe found population size estimates obtained after sample reduction to be sensitive to different thinning strategies and model specifications. Aside from the expected increase in uncertainty around parameter estimates due to a reduction in sample size, removal of detections collected during structured sampling led to a reduction in mean abundance estimates. Further testing revealed that the apparent negative bias was especially pronounced 1) for the model that included separate submodels for opportunistic and structured sampling, 2) for abundance estimates of females that were not adult scent-marking individuals, 3) for single-season SCR models, as opposed to open-population SCR models (OPSCR), and 4) when thinning was conducted only on samples collected during structured searches.\n\nOur analysis helped us hone in on the conditions under which bias is most prevalent, but further work is needed to identify the mechanisms causing it. As a next step towards a more applicable observation process model and/or data thinning scheme, we recommend a thorough characterization of the data accumulation process, including the potential link between opportunistic and structured sampling and the spatio-temporal relationship between track logs and samples.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://hdl.handle.net/11250/2650153
- https://hdl.handle.net/11250/2650153
- OA Status
- green
- Cited By
- 3
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3014756622
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014756622Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13140/rg.2.2.10543.07844Digital Object Identifier
- Title
-
Consequences of reduced sampling intensity for estimating population size of wolves in Scandinavia with spatial capture-recapture modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Cyril Milleret, Pierre Dupont, Mikael Åkesson, Linn Svensson, Henrik Brøseth, Richard BischofList of authors in order
- Landing page
-
https://hdl.handle.net/11250/2650153Publisher landing page
- PDF URL
-
https://hdl.handle.net/11250/2650153Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11250/2650153Direct OA link when available
- Concepts
-
Mark and recapture, Geography, Sampling (signal processing), Population size, Population, Statistics, Demography, Mathematics, Computer science, Sociology, Computer vision, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014756622 |
|---|---|
| doi | https://doi.org/10.13140/rg.2.2.10543.07844 |
| ids.doi | https://doi.org/10.13140/rg.2.2.10543.07844 |
| ids.mag | 3014756622 |
| ids.openalex | https://openalex.org/W3014756622 |
| fwci | 0.29520381 |
| type | article |
| title | Consequences of reduced sampling intensity for estimating population size of wolves in Scandinavia with spatial capture-recapture models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10199 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Wildlife Ecology and Conservation |
| topics[1].id | https://openalex.org/T11913 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Animal Ecology and Behavior Studies |
| topics[2].id | https://openalex.org/T10895 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9731000065803528 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2302 |
| topics[2].subfield.display_name | Ecological Modeling |
| topics[2].display_name | Species Distribution and Climate Change |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36528806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8593542575836182 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q796147 |
| concepts[0].display_name | Mark and recapture |
| concepts[1].id | https://openalex.org/C205649164 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5948551297187805 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[1].display_name | Geography |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5850937366485596 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C169733012 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5737602710723877 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1613416 |
| concepts[3].display_name | Population size |
| concepts[4].id | https://openalex.org/C2908647359 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5031654238700867 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[4].display_name | Population |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4095664620399475 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C149923435 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3500910699367523 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[6].display_name | Demography |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.21502554416656494 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17835327982902527 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C144024400 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[9].display_name | Sociology |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C106131492 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[11].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/mark-and-recapture |
| keywords[0].score | 0.8593542575836182 |
| keywords[0].display_name | Mark and recapture |
| keywords[1].id | https://openalex.org/keywords/geography |
| keywords[1].score | 0.5948551297187805 |
| keywords[1].display_name | Geography |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.5850937366485596 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/population-size |
| keywords[3].score | 0.5737602710723877 |
| keywords[3].display_name | Population size |
| keywords[4].id | https://openalex.org/keywords/population |
| keywords[4].score | 0.5031654238700867 |
| keywords[4].display_name | Population |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.4095664620399475 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/demography |
| keywords[6].score | 0.3500910699367523 |
| keywords[6].display_name | Demography |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.21502554416656494 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.17835327982902527 |
| keywords[8].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:nmbu.brage.unit.no:11250/2650153 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363604989 |
| locations[0].source.issn | |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 29 |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://hdl.handle.net/11250/2650153 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/report |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | 29 |
| locations[0].landing_page_url | https://hdl.handle.net/11250/2650153 |
| locations[1].id | doi:10.13140/rg.2.2.10543.07844 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.13140/rg.2.2.10543.07844 |
| locations[2].id | mag:3014756622 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4363604989 |
| locations[2].source.issn | |
| locations[2].source.type | journal |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | 29 |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | 29 |
| locations[2].landing_page_url | https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2650153?locale-attribute=en |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5041799983 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8563-981X |
| authorships[0].author.display_name | Cyril Milleret |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cyril Milleret |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026206972 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7438-7995 |
| authorships[1].author.display_name | Pierre Dupont |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pierre Dupont |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023768535 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4325-8840 |
| authorships[2].author.display_name | Mikael Åkesson |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mikael Åkesson |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081301284 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Linn Svensson |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Linn Svensson |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033383545 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3795-891X |
| authorships[4].author.display_name | Henrik Brøseth |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Henrik Brøseth |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043455911 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1267-9183 |
| authorships[5].author.display_name | Richard Bischof |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Richard Bischof |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/11250/2650153 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Consequences of reduced sampling intensity for estimating population size of wolves in Scandinavia with spatial capture-recapture models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10199 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Wildlife Ecology and Conservation |
| related_works | https://openalex.org/W3013264335, https://openalex.org/W3187737710, https://openalex.org/W3130818668, https://openalex.org/W2342720238, https://openalex.org/W1967522441, https://openalex.org/W2176067151, https://openalex.org/W2604387895, https://openalex.org/W2158831409, https://openalex.org/W2075825341, https://openalex.org/W2793617962, https://openalex.org/W3185297623, https://openalex.org/W2110274013, https://openalex.org/W1934187453, https://openalex.org/W3161216293, https://openalex.org/W1569555196, https://openalex.org/W2180905155, https://openalex.org/W1987648496, https://openalex.org/W2181033677, https://openalex.org/W2808318162, https://openalex.org/W2067363002 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:nmbu.brage.unit.no:11250/2650153 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363604989 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | 29 |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://hdl.handle.net/11250/2650153 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/report |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | 29 |
| best_oa_location.landing_page_url | https://hdl.handle.net/11250/2650153 |
| primary_location.id | pmh:oai:nmbu.brage.unit.no:11250/2650153 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363604989 |
| primary_location.source.issn | |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 29 |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://hdl.handle.net/11250/2650153 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/report |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | 29 |
| primary_location.landing_page_url | https://hdl.handle.net/11250/2650153 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 39 |
| abstract_inverted_index.a | 77, 170, 212, 226, 319, 323, 335 |
| abstract_inverted_index.1) | 243 |
| abstract_inverted_index.2) | 256 |
| abstract_inverted_index.3) | 268 |
| abstract_inverted_index.4) | 281 |
| abstract_inverted_index.As | 318 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.an | 88, 156 |
| abstract_inverted_index.as | 273 |
| abstract_inverted_index.be | 191 |
| abstract_inverted_index.by | 58, 65 |
| abstract_inverted_index.in | 36, 48, 52, 63, 145, 159, 163, 172, 205, 214, 228, 297 |
| abstract_inverted_index.is | 6, 80, 304, 310 |
| abstract_inverted_index.of | 29, 94, 103, 111, 125, 142, 155, 179, 218, 260, 338 |
| abstract_inverted_index.on | 113, 287, 298 |
| abstract_inverted_index.to | 15, 72, 90, 129, 165, 169, 174, 190, 193, 211, 225, 275, 312 |
| abstract_inverted_index.us | 295 |
| abstract_inverted_index.we | 333 |
| abstract_inverted_index.000 | 40 |
| abstract_inverted_index.375 | 44 |
| abstract_inverted_index.SCR | 271, 277 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.aim | 124 |
| abstract_inverted_index.and | 13, 20, 26, 62, 68, 107, 135, 197, 253, 280, 349, 352, 359 |
| abstract_inverted_index.but | 86, 307 |
| abstract_inverted_index.due | 210 |
| abstract_inverted_index.for | 83, 147, 244, 251, 257, 269 |
| abstract_inverted_index.it. | 317 |
| abstract_inverted_index.its | 17 |
| abstract_inverted_index.led | 168, 224 |
| abstract_inverted_index.not | 81, 264 |
| abstract_inverted_index.the | 2, 27, 59, 69, 92, 101, 109, 140, 176, 202, 236, 245, 299, 314, 339, 344, 353 |
| abstract_inverted_index.was | 32, 50, 128, 240, 284 |
| abstract_inverted_index.SCR. | 152 |
| abstract_inverted_index.Such | 76 |
| abstract_inverted_index.bias | 158, 239, 303 |
| abstract_inverted_index.data | 330, 340 |
| abstract_inverted_index.from | 201 |
| abstract_inverted_index.high | 78 |
| abstract_inverted_index.hone | 296 |
| abstract_inverted_index.link | 346 |
| abstract_inverted_index.logs | 358 |
| abstract_inverted_index.mean | 229 |
| abstract_inverted_index.more | 37, 324 |
| abstract_inverted_index.most | 305 |
| abstract_inverted_index.next | 320 |
| abstract_inverted_index.only | 286 |
| abstract_inverted_index.part | 53, 64 |
| abstract_inverted_index.size | 115, 149, 161, 184 |
| abstract_inverted_index.step | 321 |
| abstract_inverted_index.than | 38 |
| abstract_inverted_index.that | 138, 235, 247, 262 |
| abstract_inverted_index.this | 126, 180 |
| abstract_inverted_index.were | 263 |
| abstract_inverted_index.when | 282 |
| abstract_inverted_index.with | 43, 118 |
| abstract_inverted_index.wolf | 4, 143 |
| abstract_inverted_index.work | 309 |
| abstract_inverted_index.(NGS) | 12 |
| abstract_inverted_index.(SCR) | 121 |
| abstract_inverted_index.Aside | 200 |
| abstract_inverted_index.Every | 0 |
| abstract_inverted_index.adult | 265 |
| abstract_inverted_index.after | 187 |
| abstract_inverted_index.boost | 47 |
| abstract_inverted_index.focus | 173 |
| abstract_inverted_index.found | 182 |
| abstract_inverted_index.high, | 34 |
| abstract_inverted_index.model | 198, 246, 328 |
| abstract_inverted_index.shift | 171 |
| abstract_inverted_index.size, | 216 |
| abstract_inverted_index.study | 127 |
| abstract_inverted_index.track | 357 |
| abstract_inverted_index.under | 301 |
| abstract_inverted_index.using | 8, 151 |
| abstract_inverted_index.which | 302 |
| abstract_inverted_index.During | 22 |
| abstract_inverted_index.and/or | 329 |
| abstract_inverted_index.annual | 18 |
| abstract_inverted_index.around | 207 |
| abstract_inverted_index.assess | 16 |
| abstract_inverted_index.causes | 178 |
| abstract_inverted_index.during | 221, 290 |
| abstract_inverted_index.effort | 79 |
| abstract_inverted_index.helped | 294 |
| abstract_inverted_index.models | 278 |
| abstract_inverted_index.needed | 311 |
| abstract_inverted_index.number | 102 |
| abstract_inverted_index.public | 71 |
| abstract_inverted_index.sample | 166, 188, 215 |
| abstract_inverted_index.search | 24 |
| abstract_inverted_index.status | 19 |
| abstract_inverted_index.Further | 232 |
| abstract_inverted_index.between | 347, 356 |
| abstract_inverted_index.causing | 316 |
| abstract_inverted_index.collect | 73 |
| abstract_inverted_index.derived | 117 |
| abstract_inverted_index.females | 261 |
| abstract_inverted_index.further | 308 |
| abstract_inverted_index.general | 70 |
| abstract_inverted_index.genetic | 10, 104 |
| abstract_inverted_index.hunters | 67 |
| abstract_inverted_index.models, | 272 |
| abstract_inverted_index.opposed | 274 |
| abstract_inverted_index.process | 327 |
| abstract_inverted_index.reduced | 95 |
| abstract_inverted_index.removal | 217 |
| abstract_inverted_index.samples | 30, 41, 74, 105, 288 |
| abstract_inverted_index.scheme, | 332 |
| abstract_inverted_index.spatial | 119, 136 |
| abstract_inverted_index.testing | 233 |
| abstract_inverted_index.thinned | 100 |
| abstract_inverted_index.through | 54 |
| abstract_inverted_index.towards | 322 |
| abstract_inverted_index.trends. | 21 |
| abstract_inverted_index.winter, | 1 |
| abstract_inverted_index.(OPSCR), | 279 |
| abstract_inverted_index.2017/18, | 23 |
| abstract_inverted_index.However, | 153 |
| abstract_inverted_index.analysis | 293 |
| abstract_inverted_index.apparent | 157, 237 |
| abstract_inverted_index.evaluate | 91 |
| abstract_inverted_index.expected | 203 |
| abstract_inverted_index.identify | 130, 313 |
| abstract_inverted_index.included | 248 |
| abstract_inverted_index.increase | 204 |
| abstract_inverted_index.negative | 238 |
| abstract_inverted_index.obtained | 186 |
| abstract_inverted_index.original | 123 |
| abstract_inverted_index.possible | 177 |
| abstract_inverted_index.presents | 87 |
| abstract_inverted_index.process, | 342 |
| abstract_inverted_index.realized | 51 |
| abstract_inverted_index.response | 164 |
| abstract_inverted_index.revealed | 234 |
| abstract_inverted_index.samples. | 360 |
| abstract_inverted_index.sampling | 11, 49, 96, 131, 223, 351 |
| abstract_inverted_index.searches | 57 |
| abstract_inverted_index.separate | 249 |
| abstract_inverted_index.surveyed | 7 |
| abstract_inverted_index.thinning | 112, 195, 283, 331 |
| abstract_inverted_index.thorough | 336 |
| abstract_inverted_index.(sampling | 133 |
| abstract_inverted_index.abundance | 230, 258 |
| abstract_inverted_index.available | 106 |
| abstract_inverted_index.collected | 220, 289 |
| abstract_inverted_index.conducted | 285 |
| abstract_inverted_index.different | 194 |
| abstract_inverted_index.discovery | 154 |
| abstract_inverted_index.estimates | 116, 162, 185, 209, 259 |
| abstract_inverted_index.evaluated | 108 |
| abstract_inverted_index.genotyped | 31 |
| abstract_inverted_index.including | 343 |
| abstract_inverted_index.increased | 139 |
| abstract_inverted_index.intensity | 25, 134 |
| abstract_inverted_index.long-term | 84 |
| abstract_inverted_index.parameter | 208 |
| abstract_inverted_index.potential | 345 |
| abstract_inverted_index.recommend | 334 |
| abstract_inverted_index.reduction | 167, 189, 213, 227 |
| abstract_inverted_index.resulting | 35 |
| abstract_inverted_index.sampling, | 255 |
| abstract_inverted_index.sensitive | 192 |
| abstract_inverted_index.submodels | 250 |
| abstract_inverted_index.unusually | 33 |
| abstract_inverted_index.applicable | 325 |
| abstract_inverted_index.associated | 42 |
| abstract_inverted_index.conditions | 300 |
| abstract_inverted_index.detections | 219 |
| abstract_inverted_index.especially | 241 |
| abstract_inverted_index.estimates. | 231 |
| abstract_inverted_index.estimation | 150 |
| abstract_inverted_index.intensity. | 97 |
| abstract_inverted_index.management | 60 |
| abstract_inverted_index.mechanisms | 315 |
| abstract_inverted_index.monitoring | 144 |
| abstract_inverted_index.population | 5, 114, 148, 160, 183 |
| abstract_inverted_index.prevalent, | 306 |
| abstract_inverted_index.pronounced | 242 |
| abstract_inverted_index.proportion | 28 |
| abstract_inverted_index.strategies | 132, 196 |
| abstract_inverted_index.structured | 56, 222, 254, 291, 350 |
| abstract_inverted_index.Scandinavia | 146 |
| abstract_inverted_index.authorities | 61 |
| abstract_inverted_index.encouraging | 66 |
| abstract_inverted_index.identifying | 175 |
| abstract_inverted_index.intensified | 55 |
| abstract_inverted_index.monitoring, | 85 |
| abstract_inverted_index.observation | 326 |
| abstract_inverted_index.opportunity | 89 |
| abstract_inverted_index.sustainable | 82 |
| abstract_inverted_index.uncertainty | 206 |
| abstract_inverted_index.Scandinavian | 3 |
| abstract_inverted_index.accumulation | 341 |
| abstract_inverted_index.artificially | 99 |
| abstract_inverted_index.consequences | 93, 110 |
| abstract_inverted_index.individuals, | 267 |
| abstract_inverted_index.individuals. | 45 |
| abstract_inverted_index.non-invasive | 9 |
| abstract_inverted_index.relationship | 355 |
| abstract_inverted_index.opportunistic | 252, 348 |
| abstract_inverted_index.scent-marking | 266 |
| abstract_inverted_index.single-season | 270 |
| abstract_inverted_index.snow-tracking | 14 |
| abstract_inverted_index.configuration) | 137 |
| abstract_inverted_index.models.\n\nThe | 122 |
| abstract_inverted_index.pattern.\n\nWe | 181 |
| abstract_inverted_index.cost-efficiency | 141 |
| abstract_inverted_index.open-population | 276 |
| abstract_inverted_index.spatio-temporal | 354 |
| abstract_inverted_index.specifications. | 199 |
| abstract_inverted_index.characterization | 337 |
| abstract_inverted_index.searches.\n\nOur | 292 |
| abstract_inverted_index.capture-recapture | 120 |
| abstract_inverted_index.opportunistically. | 75 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.61008505 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |