Considerations for Applying Entropy Methods to Temporally Correlated Stochastic Datasets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/e25020306
The goal of this paper is to highlight considerations and provide recommendations for analytical issues that arise when applying entropy methods, specifically Sample Entropy (SampEn), to temporally correlated stochastic datasets, which are representative of a broad range of biomechanical and physiological variables. To simulate a variety of processes encountered in biomechanical applications, autoregressive fractionally integrated moving averaged (ARFIMA) models were used to produce temporally correlated data spanning the fractional Gaussian noise/fractional Brownian motion model. We then applied ARFIMA modeling and SampEn to the datasets to quantify the temporal correlations and regularity of the simulated datasets. We demonstrate the use of ARFIMA modeling for estimating temporal correlation properties and classifying stochastic datasets as stationary or nonstationary. We then leverage ARFIMA modeling to improve the effectiveness of data cleaning procedures and mitigate the influence of outliers on SampEn estimates. We also emphasize the limitations of SampEn to distinguish among stochastic datasets and suggest the use of complementary measures to better characterize the dynamics of biomechanical variables. Finally, we demonstrate that parameter normalization is not an effective procedure for increasing the interoperability of SampEn estimates, at least not for entirely stochastic datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e25020306
- https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180
- OA Status
- gold
- Cited By
- 2
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319599930
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319599930Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e25020306Digital Object Identifier
- Title
-
Considerations for Applying Entropy Methods to Temporally Correlated Stochastic DatasetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-07Full publication date if available
- Authors
-
Joshua J. Liddy, Michael A. BusaList of authors in order
- Landing page
-
https://doi.org/10.3390/e25020306Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180Direct OA link when available
- Concepts
-
Autoregressive fractionally integrated moving average, Sample entropy, Autoregressive model, Outlier, Computer science, Mathematics, Econometrics, Artificial intelligence, Pattern recognition (psychology), Long memory, Volatility (finance)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319599930 |
|---|---|
| doi | https://doi.org/10.3390/e25020306 |
| ids.doi | https://doi.org/10.3390/e25020306 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36832672 |
| ids.openalex | https://openalex.org/W4319599930 |
| fwci | 0.67143376 |
| type | article |
| title | Considerations for Applying Entropy Methods to Temporally Correlated Stochastic Datasets |
| awards[0].id | https://openalex.org/G6679999339 |
| awards[0].funder_id | https://openalex.org/F4320338295 |
| awards[0].display_name | |
| awards[0].funder_award_id | W911NF2120208 |
| awards[0].funder_display_name | Army Research Laboratory |
| biblio.issue | 2 |
| biblio.volume | 25 |
| biblio.last_page | 306 |
| biblio.first_page | 306 |
| topics[0].id | https://openalex.org/T10745 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9909999966621399 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Heart Rate Variability and Autonomic Control |
| topics[1].id | https://openalex.org/T11270 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9679999947547913 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Complex Systems and Time Series Analysis |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9164000153541565 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| funders[0].id | https://openalex.org/F4320338295 |
| funders[0].ror | https://ror.org/011hc8f90 |
| funders[0].display_name | Army Research Laboratory |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C1297061 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8175060153007507 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4826945 |
| concepts[0].display_name | Autoregressive fractionally integrated moving average |
| concepts[1].id | https://openalex.org/C66696666 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6194537281990051 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17105612 |
| concepts[1].display_name | Sample entropy |
| concepts[2].id | https://openalex.org/C159877910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5385113954544067 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[2].display_name | Autoregressive model |
| concepts[3].id | https://openalex.org/C79337645 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5257179141044617 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[3].display_name | Outlier |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.45687544345855713 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3939349949359894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36433547735214233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2809179425239563 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.21575936675071716 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2986394398 |
| concepts[9].level | 3 |
| concepts[9].score | 0.1271296739578247 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1805477 |
| concepts[9].display_name | Long memory |
| concepts[10].id | https://openalex.org/C91602232 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[10].display_name | Volatility (finance) |
| keywords[0].id | https://openalex.org/keywords/autoregressive-fractionally-integrated-moving-average |
| keywords[0].score | 0.8175060153007507 |
| keywords[0].display_name | Autoregressive fractionally integrated moving average |
| keywords[1].id | https://openalex.org/keywords/sample-entropy |
| keywords[1].score | 0.6194537281990051 |
| keywords[1].display_name | Sample entropy |
| keywords[2].id | https://openalex.org/keywords/autoregressive-model |
| keywords[2].score | 0.5385113954544067 |
| keywords[2].display_name | Autoregressive model |
| keywords[3].id | https://openalex.org/keywords/outlier |
| keywords[3].score | 0.5257179141044617 |
| keywords[3].display_name | Outlier |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.45687544345855713 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3939349949359894 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.36433547735214233 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2809179425239563 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.21575936675071716 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/long-memory |
| keywords[9].score | 0.1271296739578247 |
| keywords[9].display_name | Long memory |
| language | en |
| locations[0].id | doi:10.3390/e25020306 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e25020306 |
| locations[1].id | pmid:36832672 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36832672 |
| locations[2].id | pmh:oai:doaj.org/article:79181782860b40ca8b8e7ea9f95292e2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 25, Iss 2, p 306 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/79181782860b40ca8b8e7ea9f95292e2 |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/25/2/306/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e25020306 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9955719 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9955719 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5015726468 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2081-4648 |
| authorships[0].author.display_name | Joshua J. Liddy |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA |
| authorships[0].institutions[0].id | https://openalex.org/I24603500 |
| authorships[0].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua Liddy |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA |
| authorships[1].author.id | https://openalex.org/A5060702222 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9681-1902 |
| authorships[1].author.display_name | Michael A. Busa |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I24603500 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA |
| authorships[1].institutions[0].id | https://openalex.org/I24603500 |
| authorships[1].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Michael Busa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Considerations for Applying Entropy Methods to Temporally Correlated Stochastic Datasets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10745 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9909999966621399 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Heart Rate Variability and Autonomic Control |
| related_works | https://openalex.org/W2352758114, https://openalex.org/W70209806, https://openalex.org/W1723168584, https://openalex.org/W1582803491, https://openalex.org/W4400988174, https://openalex.org/W2156628102, https://openalex.org/W1987414477, https://openalex.org/W1579209742, https://openalex.org/W2024278573, https://openalex.org/W3124139563 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e25020306 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e25020306 |
| primary_location.id | doi:10.3390/e25020306 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/25/2/306/pdf?version=1675922180 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e25020306 |
| publication_date | 2023-02-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4225387501, https://openalex.org/W2905312892, https://openalex.org/W2804262592, https://openalex.org/W2796603688, https://openalex.org/W2030574544, https://openalex.org/W2294269162, https://openalex.org/W2759692012, https://openalex.org/W2114533977, https://openalex.org/W2202662545, https://openalex.org/W2088200259, https://openalex.org/W2280857076, https://openalex.org/W2164509517, https://openalex.org/W1535224843, https://openalex.org/W2347124964, https://openalex.org/W2065327112, https://openalex.org/W3023805925, https://openalex.org/W3009489684, https://openalex.org/W2011987961, https://openalex.org/W6722992161, https://openalex.org/W2152254020, https://openalex.org/W2947459187, https://openalex.org/W2077204677, https://openalex.org/W1986488785, https://openalex.org/W2010220218, https://openalex.org/W6632005825, https://openalex.org/W1862394037, https://openalex.org/W2031377725, https://openalex.org/W6638355978, https://openalex.org/W1987822316, https://openalex.org/W6686319115, https://openalex.org/W2093266575, https://openalex.org/W6665389906, https://openalex.org/W1987616321, https://openalex.org/W2149445461, https://openalex.org/W2313888347, https://openalex.org/W2173977718, https://openalex.org/W2148492655, https://openalex.org/W2106008945, https://openalex.org/W1868744023, https://openalex.org/W2894910760, https://openalex.org/W2093589470, https://openalex.org/W2118183148, https://openalex.org/W2031753087, https://openalex.org/W3128949674, https://openalex.org/W2992394061, https://openalex.org/W1967071544, https://openalex.org/W4206059443, https://openalex.org/W2055781590, https://openalex.org/W2081793282, https://openalex.org/W2081438405, https://openalex.org/W2280524715, https://openalex.org/W2757536716, https://openalex.org/W1984414527, https://openalex.org/W2040704490, https://openalex.org/W2040975718, https://openalex.org/W2129447992, https://openalex.org/W2081920907, https://openalex.org/W1992839121, https://openalex.org/W2137690751, https://openalex.org/W2158041600, https://openalex.org/W1890481640, https://openalex.org/W2793984799, https://openalex.org/W2031365860, https://openalex.org/W4248273320, https://openalex.org/W2059851411, https://openalex.org/W2186772993, https://openalex.org/W2486083357, https://openalex.org/W1776514298 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 34, 44 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.We | 74, 95, 115, 137 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.as | 111 |
| abstract_inverted_index.at | 182 |
| abstract_inverted_index.in | 49 |
| abstract_inverted_index.is | 5, 170 |
| abstract_inverted_index.of | 2, 33, 37, 46, 91, 99, 124, 132, 142, 153, 161, 179 |
| abstract_inverted_index.on | 134 |
| abstract_inverted_index.or | 113 |
| abstract_inverted_index.to | 6, 25, 61, 81, 84, 120, 144, 156 |
| abstract_inverted_index.we | 165 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 9, 39, 79, 89, 107, 128, 149 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.for | 12, 102, 175, 185 |
| abstract_inverted_index.not | 171, 184 |
| abstract_inverted_index.the | 67, 82, 86, 92, 97, 122, 130, 140, 151, 159, 177 |
| abstract_inverted_index.use | 98, 152 |
| abstract_inverted_index.also | 138 |
| abstract_inverted_index.data | 65, 125 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.that | 15, 167 |
| abstract_inverted_index.then | 75, 116 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.used | 60 |
| abstract_inverted_index.were | 59 |
| abstract_inverted_index.when | 17 |
| abstract_inverted_index.among | 146 |
| abstract_inverted_index.arise | 16 |
| abstract_inverted_index.broad | 35 |
| abstract_inverted_index.least | 183 |
| abstract_inverted_index.paper | 4 |
| abstract_inverted_index.range | 36 |
| abstract_inverted_index.which | 30 |
| abstract_inverted_index.ARFIMA | 77, 100, 118 |
| abstract_inverted_index.SampEn | 80, 135, 143, 180 |
| abstract_inverted_index.Sample | 22 |
| abstract_inverted_index.better | 157 |
| abstract_inverted_index.issues | 14 |
| abstract_inverted_index.model. | 73 |
| abstract_inverted_index.models | 58 |
| abstract_inverted_index.motion | 72 |
| abstract_inverted_index.moving | 55 |
| abstract_inverted_index.Entropy | 23 |
| abstract_inverted_index.applied | 76 |
| abstract_inverted_index.entropy | 19 |
| abstract_inverted_index.improve | 121 |
| abstract_inverted_index.produce | 62 |
| abstract_inverted_index.provide | 10 |
| abstract_inverted_index.suggest | 150 |
| abstract_inverted_index.variety | 45 |
| abstract_inverted_index.(ARFIMA) | 57 |
| abstract_inverted_index.Brownian | 71 |
| abstract_inverted_index.Finally, | 164 |
| abstract_inverted_index.Gaussian | 69 |
| abstract_inverted_index.applying | 18 |
| abstract_inverted_index.averaged | 56 |
| abstract_inverted_index.cleaning | 126 |
| abstract_inverted_index.datasets | 83, 110, 148 |
| abstract_inverted_index.dynamics | 160 |
| abstract_inverted_index.entirely | 186 |
| abstract_inverted_index.leverage | 117 |
| abstract_inverted_index.measures | 155 |
| abstract_inverted_index.methods, | 20 |
| abstract_inverted_index.mitigate | 129 |
| abstract_inverted_index.modeling | 78, 101, 119 |
| abstract_inverted_index.outliers | 133 |
| abstract_inverted_index.quantify | 85 |
| abstract_inverted_index.simulate | 43 |
| abstract_inverted_index.spanning | 66 |
| abstract_inverted_index.temporal | 87, 104 |
| abstract_inverted_index.(SampEn), | 24 |
| abstract_inverted_index.datasets, | 29 |
| abstract_inverted_index.datasets. | 94, 188 |
| abstract_inverted_index.effective | 173 |
| abstract_inverted_index.emphasize | 139 |
| abstract_inverted_index.highlight | 7 |
| abstract_inverted_index.influence | 131 |
| abstract_inverted_index.parameter | 168 |
| abstract_inverted_index.procedure | 174 |
| abstract_inverted_index.processes | 47 |
| abstract_inverted_index.simulated | 93 |
| abstract_inverted_index.analytical | 13 |
| abstract_inverted_index.correlated | 27, 64 |
| abstract_inverted_index.estimates, | 181 |
| abstract_inverted_index.estimates. | 136 |
| abstract_inverted_index.estimating | 103 |
| abstract_inverted_index.fractional | 68 |
| abstract_inverted_index.increasing | 176 |
| abstract_inverted_index.integrated | 54 |
| abstract_inverted_index.procedures | 127 |
| abstract_inverted_index.properties | 106 |
| abstract_inverted_index.regularity | 90 |
| abstract_inverted_index.stationary | 112 |
| abstract_inverted_index.stochastic | 28, 109, 147, 187 |
| abstract_inverted_index.temporally | 26, 63 |
| abstract_inverted_index.variables. | 41, 163 |
| abstract_inverted_index.classifying | 108 |
| abstract_inverted_index.correlation | 105 |
| abstract_inverted_index.demonstrate | 96, 166 |
| abstract_inverted_index.distinguish | 145 |
| abstract_inverted_index.encountered | 48 |
| abstract_inverted_index.limitations | 141 |
| abstract_inverted_index.characterize | 158 |
| abstract_inverted_index.correlations | 88 |
| abstract_inverted_index.fractionally | 53 |
| abstract_inverted_index.specifically | 21 |
| abstract_inverted_index.applications, | 51 |
| abstract_inverted_index.biomechanical | 38, 50, 162 |
| abstract_inverted_index.complementary | 154 |
| abstract_inverted_index.effectiveness | 123 |
| abstract_inverted_index.normalization | 169 |
| abstract_inverted_index.physiological | 40 |
| abstract_inverted_index.autoregressive | 52 |
| abstract_inverted_index.considerations | 8 |
| abstract_inverted_index.nonstationary. | 114 |
| abstract_inverted_index.representative | 32 |
| abstract_inverted_index.recommendations | 11 |
| abstract_inverted_index.interoperability | 178 |
| abstract_inverted_index.noise/fractional | 70 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5015726468 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I24603500 |
| citation_normalized_percentile.value | 0.65651638 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |