Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise Regression Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/e22090965
Predictive models play a central role in decision making. Penalized regression approaches, such as least absolute shrinkage and selection operator (LASSO), have been widely used to construct predictive models and explain the impacts of the selected predictors, but the estimates are typically biased. Moreover, when data are ultrahigh-dimensional, penalized regression is usable only after applying variable screening methods to downsize variables. We propose a stepwise procedure for fitting generalized linear models with ultrahigh dimensional predictors. Our procedure can provide a final model; control both false negatives and false positives; and yield consistent estimates, which are useful to gauge the actual effect size of risk factors. Simulations and applications to two clinical studies verify the utility of the method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e22090965
- https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614
- OA Status
- gold
- Cited By
- 10
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3081922164
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3081922164Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e22090965Digital Object Identifier
- Title
-
Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise RegressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-31Full publication date if available
- Authors
-
Alex Pijyan, Qi Zheng, Hyokyoung G. Hong, Yi LiList of authors in order
- Landing page
-
https://doi.org/10.3390/e22090965Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614Direct OA link when available
- Concepts
-
Lasso (programming language), Linear regression, Regression, Stepwise regression, Feature selection, Linear model, Generalized linear model, Regression analysis, Computer science, Mathematics, Statistics, Model selection, False positive paradox, False positives and false negatives, Econometrics, Artificial intelligence, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 2, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3081922164 |
|---|---|
| doi | https://doi.org/10.3390/e22090965 |
| ids.doi | https://doi.org/10.3390/e22090965 |
| ids.mag | 3081922164 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33286734 |
| ids.openalex | https://openalex.org/W3081922164 |
| fwci | 1.22965966 |
| type | article |
| title | Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise Regression |
| awards[0].id | https://openalex.org/G6746174689 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DMS 1915099 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 9 |
| biblio.volume | 22 |
| biblio.last_page | 965 |
| biblio.first_page | 965 |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T10243 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Bayesian Inference |
| topics[2].id | https://openalex.org/T10885 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene expression and cancer classification |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C37616216 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7932405471801758 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[0].display_name | Lasso (programming language) |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5801299810409546 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.544955849647522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C170964787 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5366204977035522 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7611170 |
| concepts[3].display_name | Stepwise regression |
| concepts[4].id | https://openalex.org/C148483581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5122334361076355 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[4].display_name | Feature selection |
| concepts[5].id | https://openalex.org/C163175372 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4728529751300812 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[5].display_name | Linear model |
| concepts[6].id | https://openalex.org/C41587187 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47083497047424316 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[6].display_name | Generalized linear model |
| concepts[7].id | https://openalex.org/C152877465 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4613409638404846 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[7].display_name | Regression analysis |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4589037299156189 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.45034781098365784 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4476260542869568 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C93959086 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44518041610717773 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[11].display_name | Model selection |
| concepts[12].id | https://openalex.org/C64869954 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43096408247947693 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[12].display_name | False positive paradox |
| concepts[13].id | https://openalex.org/C112789634 |
| concepts[13].level | 3 |
| concepts[13].score | 0.43069422245025635 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q18207010 |
| concepts[13].display_name | False positives and false negatives |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3510533571243286 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2951089143753052 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C136764020 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[16].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/lasso |
| keywords[0].score | 0.7932405471801758 |
| keywords[0].display_name | Lasso (programming language) |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.5801299810409546 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.544955849647522 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/stepwise-regression |
| keywords[3].score | 0.5366204977035522 |
| keywords[3].display_name | Stepwise regression |
| keywords[4].id | https://openalex.org/keywords/feature-selection |
| keywords[4].score | 0.5122334361076355 |
| keywords[4].display_name | Feature selection |
| keywords[5].id | https://openalex.org/keywords/linear-model |
| keywords[5].score | 0.4728529751300812 |
| keywords[5].display_name | Linear model |
| keywords[6].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[6].score | 0.47083497047424316 |
| keywords[6].display_name | Generalized linear model |
| keywords[7].id | https://openalex.org/keywords/regression-analysis |
| keywords[7].score | 0.4613409638404846 |
| keywords[7].display_name | Regression analysis |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4589037299156189 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.45034781098365784 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.4476260542869568 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/model-selection |
| keywords[11].score | 0.44518041610717773 |
| keywords[11].display_name | Model selection |
| keywords[12].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[12].score | 0.43096408247947693 |
| keywords[12].display_name | False positive paradox |
| keywords[13].id | https://openalex.org/keywords/false-positives-and-false-negatives |
| keywords[13].score | 0.43069422245025635 |
| keywords[13].display_name | False positives and false negatives |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.3510533571243286 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2951089143753052 |
| keywords[15].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/e22090965 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e22090965 |
| locations[1].id | pmid:33286734 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33286734 |
| locations[2].id | pmh:oai:doaj.org/article:1292e1426b6e46d39f9154deadf98e01 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 22, Iss 9, p 965 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/1292e1426b6e46d39f9154deadf98e01 |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/22/9/965/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy; Volume 22; Issue 9; Pages: 965 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e22090965 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7597260 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7597260 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5054134425 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1979-8502 |
| authorships[0].author.display_name | Alex Pijyan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA |
| authorships[0].institutions[0].id | https://openalex.org/I87216513 |
| authorships[0].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Michigan State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alex Pijyan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA |
| authorships[1].author.id | https://openalex.org/A5050439687 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4654-2801 |
| authorships[1].author.display_name | Qi Zheng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142740786 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA |
| authorships[1].institutions[0].id | https://openalex.org/I142740786 |
| authorships[1].institutions[0].ror | https://ror.org/01ckdn478 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142740786 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Louisville |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qi Zheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA |
| authorships[2].author.id | https://openalex.org/A5003116913 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4280-6243 |
| authorships[2].author.display_name | Hyokyoung G. Hong |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA |
| authorships[2].institutions[0].id | https://openalex.org/I87216513 |
| authorships[2].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Michigan State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hyokyoung G. Hong |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA |
| authorships[3].author.id | https://openalex.org/A5100421736 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1720-2760 |
| authorships[3].author.display_name | Yi Li |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA |
| authorships[3].institutions[0].id | https://openalex.org/I27837315 |
| authorships[3].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Michigan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yi Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise Regression |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W4256576576, https://openalex.org/W2039944430, https://openalex.org/W4200341517, https://openalex.org/W4387361005, https://openalex.org/W3015383640, https://openalex.org/W4236370022, https://openalex.org/W2374035137, https://openalex.org/W1830254893, https://openalex.org/W4301403450, https://openalex.org/W1980211030 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e22090965 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e22090965 |
| primary_location.id | doi:10.3390/e22090965 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/22/9/965/pdf?version=1599114614 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e22090965 |
| publication_date | 2020-08-31 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2906694199, https://openalex.org/W1025063590, https://openalex.org/W2135046866, https://openalex.org/W1647208208, https://openalex.org/W2973982427, https://openalex.org/W2154560360, https://openalex.org/W1635119602, https://openalex.org/W3122008423, https://openalex.org/W6766361926, https://openalex.org/W2919787294, https://openalex.org/W2063978378, https://openalex.org/W1637540033, https://openalex.org/W2670560854, https://openalex.org/W2264285301, https://openalex.org/W2124587329, https://openalex.org/W2031220322, https://openalex.org/W4301861531, https://openalex.org/W2312839476, https://openalex.org/W2142246398, https://openalex.org/W2053061982, https://openalex.org/W2147606185, https://openalex.org/W1482495168, https://openalex.org/W2029947124, https://openalex.org/W1749326457, https://openalex.org/W2026574448, https://openalex.org/W2147631685, https://openalex.org/W2016119924, https://openalex.org/W2081474178, https://openalex.org/W2040905895, https://openalex.org/W2787894218, https://openalex.org/W2157076315, https://openalex.org/W2149144946, https://openalex.org/W77440566, https://openalex.org/W2120875981, https://openalex.org/W2114810168, https://openalex.org/W3003383864, https://openalex.org/W6626628384, https://openalex.org/W2945442231, https://openalex.org/W2099567806, https://openalex.org/W1484359847, https://openalex.org/W2019690235, https://openalex.org/W2776452403, https://openalex.org/W2538302144, https://openalex.org/W2198562037, https://openalex.org/W4242289937, https://openalex.org/W6682241100, https://openalex.org/W4247571494, https://openalex.org/W2042024619, https://openalex.org/W2997644599, https://openalex.org/W3103324688, https://openalex.org/W3102942031, https://openalex.org/W2150940164, https://openalex.org/W3100041486, https://openalex.org/W1587026990, https://openalex.org/W3106108064, https://openalex.org/W3106171511, https://openalex.org/W3098713891, https://openalex.org/W2964685033 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 3, 63, 79 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 50 |
| abstract_inverted_index.of | 33, 102, 115 |
| abstract_inverted_index.to | 25, 58, 96, 108 |
| abstract_inverted_index.Our | 75 |
| abstract_inverted_index.and | 17, 29, 86, 89, 106 |
| abstract_inverted_index.are | 40, 46, 94 |
| abstract_inverted_index.but | 37 |
| abstract_inverted_index.can | 77 |
| abstract_inverted_index.for | 66 |
| abstract_inverted_index.the | 31, 34, 38, 98, 113, 116 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.been | 22 |
| abstract_inverted_index.both | 83 |
| abstract_inverted_index.data | 45 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.only | 52 |
| abstract_inverted_index.play | 2 |
| abstract_inverted_index.risk | 103 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.size | 101 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.used | 24 |
| abstract_inverted_index.when | 44 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.after | 53 |
| abstract_inverted_index.false | 84, 87 |
| abstract_inverted_index.final | 80 |
| abstract_inverted_index.gauge | 97 |
| abstract_inverted_index.least | 14 |
| abstract_inverted_index.which | 93 |
| abstract_inverted_index.yield | 90 |
| abstract_inverted_index.actual | 99 |
| abstract_inverted_index.effect | 100 |
| abstract_inverted_index.linear | 69 |
| abstract_inverted_index.model; | 81 |
| abstract_inverted_index.models | 1, 28, 70 |
| abstract_inverted_index.usable | 51 |
| abstract_inverted_index.useful | 95 |
| abstract_inverted_index.verify | 112 |
| abstract_inverted_index.widely | 23 |
| abstract_inverted_index.biased. | 42 |
| abstract_inverted_index.central | 4 |
| abstract_inverted_index.control | 82 |
| abstract_inverted_index.explain | 30 |
| abstract_inverted_index.fitting | 67 |
| abstract_inverted_index.impacts | 32 |
| abstract_inverted_index.making. | 8 |
| abstract_inverted_index.method. | 117 |
| abstract_inverted_index.methods | 57 |
| abstract_inverted_index.propose | 62 |
| abstract_inverted_index.provide | 78 |
| abstract_inverted_index.studies | 111 |
| abstract_inverted_index.utility | 114 |
| abstract_inverted_index.(LASSO), | 20 |
| abstract_inverted_index.absolute | 15 |
| abstract_inverted_index.applying | 54 |
| abstract_inverted_index.clinical | 110 |
| abstract_inverted_index.decision | 7 |
| abstract_inverted_index.downsize | 59 |
| abstract_inverted_index.factors. | 104 |
| abstract_inverted_index.operator | 19 |
| abstract_inverted_index.selected | 35 |
| abstract_inverted_index.stepwise | 64 |
| abstract_inverted_index.variable | 55 |
| abstract_inverted_index.Moreover, | 43 |
| abstract_inverted_index.Penalized | 9 |
| abstract_inverted_index.construct | 26 |
| abstract_inverted_index.estimates | 39 |
| abstract_inverted_index.negatives | 85 |
| abstract_inverted_index.penalized | 48 |
| abstract_inverted_index.procedure | 65, 76 |
| abstract_inverted_index.screening | 56 |
| abstract_inverted_index.selection | 18 |
| abstract_inverted_index.shrinkage | 16 |
| abstract_inverted_index.typically | 41 |
| abstract_inverted_index.ultrahigh | 72 |
| abstract_inverted_index.Predictive | 0 |
| abstract_inverted_index.consistent | 91 |
| abstract_inverted_index.estimates, | 92 |
| abstract_inverted_index.positives; | 88 |
| abstract_inverted_index.predictive | 27 |
| abstract_inverted_index.regression | 10, 49 |
| abstract_inverted_index.variables. | 60 |
| abstract_inverted_index.Simulations | 105 |
| abstract_inverted_index.approaches, | 11 |
| abstract_inverted_index.dimensional | 73 |
| abstract_inverted_index.generalized | 68 |
| abstract_inverted_index.predictors, | 36 |
| abstract_inverted_index.predictors. | 74 |
| abstract_inverted_index.applications | 107 |
| abstract_inverted_index.ultrahigh-dimensional, | 47 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5003116913 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I87216513 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.80096043 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |