Consistent information criteria for regularized regression and loss-based learning problems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.17181
Many problems in statistics and machine learning can be formulated as model selection problems, where the goal is to choose an optimal parsimonious model among a set of candidate models. It is typical to conduct model selection by penalizing the objective function via information criteria (IC), as with the pioneering work by Akaike and Schwarz. Via recent work, we propose a generalized IC framework to consistently estimate general loss-based learning problems. In this work, we propose a consistent estimation method for Generalized Linear Model (GLM) regressions by utilizing the recent IC developments. We advance the generalized IC framework by proposing model selection problems, where the model set consists of a potentially uncountable set of models. In addition to theoretical expositions, our proposal introduces a computational procedure for the implementation of our methods in the finite sample setting, which we demonstrate via an extensive simulation study.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.17181
- https://arxiv.org/pdf/2404.17181
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396243647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396243647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.17181Digital Object Identifier
- Title
-
Consistent information criteria for regularized regression and loss-based learning problemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-26Full publication date if available
- Authors
-
Qingyuan Zhang, Hien D. NguyenList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.17181Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.17181Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.17181Direct OA link when available
- Concepts
-
Regression, Regression analysis, Computer science, Information loss, Artificial intelligence, Econometrics, Machine learning, Statistics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396243647 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.17181 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.17181 |
| ids.openalex | https://openalex.org/W4396243647 |
| fwci | |
| type | preprint |
| title | Consistent information criteria for regularized regression and loss-based learning problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8458999991416931 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8039000034332275 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7207000255584717 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C83546350 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6907540559768677 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[0].display_name | Regression |
| concepts[1].id | https://openalex.org/C152877465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47148796916007996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[1].display_name | Regression analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45886915922164917 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2988416141 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4512273371219635 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6031139 |
| concepts[3].display_name | Information loss |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3880632519721985 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3877338171005249 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37282225489616394 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.365111768245697 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2654123902320862 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/regression |
| keywords[0].score | 0.6907540559768677 |
| keywords[0].display_name | Regression |
| keywords[1].id | https://openalex.org/keywords/regression-analysis |
| keywords[1].score | 0.47148796916007996 |
| keywords[1].display_name | Regression analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.45886915922164917 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/information-loss |
| keywords[3].score | 0.4512273371219635 |
| keywords[3].display_name | Information loss |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3880632519721985 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.3877338171005249 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.37282225489616394 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.365111768245697 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2654123902320862 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.17181 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.17181 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.17181 |
| locations[1].id | doi:10.48550/arxiv.2404.17181 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.17181 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100741388 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0823-308X |
| authorships[0].author.display_name | Qingyuan Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Qingyuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037340964 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9958-432X |
| authorships[1].author.display_name | Hien D. Nguyen |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nguyen, Hien Duy |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.17181 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-30T00:00:00 |
| display_name | Consistent information criteria for regularized regression and loss-based learning problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8458999991416931 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W2034959125, https://openalex.org/W2355687852, https://openalex.org/W2621086889 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.17181 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.17181 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.17181 |
| primary_location.id | pmh:oai:arXiv.org:2404.17181 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.17181 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.17181 |
| publication_date | 2024-04-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 60, 76, 109, 123 |
| abstract_inverted_index.IC | 62, 90, 96 |
| abstract_inverted_index.In | 71, 115 |
| abstract_inverted_index.It | 30 |
| abstract_inverted_index.We | 92 |
| abstract_inverted_index.an | 20, 141 |
| abstract_inverted_index.as | 10, 46 |
| abstract_inverted_index.be | 8 |
| abstract_inverted_index.by | 37, 51, 86, 98 |
| abstract_inverted_index.in | 2, 132 |
| abstract_inverted_index.is | 17, 31 |
| abstract_inverted_index.of | 27, 108, 113, 129 |
| abstract_inverted_index.to | 18, 33, 64, 117 |
| abstract_inverted_index.we | 58, 74, 138 |
| abstract_inverted_index.Via | 55 |
| abstract_inverted_index.and | 4, 53 |
| abstract_inverted_index.can | 7 |
| abstract_inverted_index.for | 80, 126 |
| abstract_inverted_index.our | 120, 130 |
| abstract_inverted_index.set | 26, 106, 112 |
| abstract_inverted_index.the | 15, 39, 48, 88, 94, 104, 127, 133 |
| abstract_inverted_index.via | 42, 140 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.goal | 16 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.work | 50 |
| abstract_inverted_index.(GLM) | 84 |
| abstract_inverted_index.(IC), | 45 |
| abstract_inverted_index.Model | 83 |
| abstract_inverted_index.among | 24 |
| abstract_inverted_index.model | 11, 23, 35, 100, 105 |
| abstract_inverted_index.where | 14, 103 |
| abstract_inverted_index.which | 137 |
| abstract_inverted_index.work, | 57, 73 |
| abstract_inverted_index.Akaike | 52 |
| abstract_inverted_index.Linear | 82 |
| abstract_inverted_index.choose | 19 |
| abstract_inverted_index.finite | 134 |
| abstract_inverted_index.method | 79 |
| abstract_inverted_index.recent | 56, 89 |
| abstract_inverted_index.sample | 135 |
| abstract_inverted_index.study. | 144 |
| abstract_inverted_index.advance | 93 |
| abstract_inverted_index.conduct | 34 |
| abstract_inverted_index.general | 67 |
| abstract_inverted_index.machine | 5 |
| abstract_inverted_index.methods | 131 |
| abstract_inverted_index.models. | 29, 114 |
| abstract_inverted_index.optimal | 21 |
| abstract_inverted_index.propose | 59, 75 |
| abstract_inverted_index.typical | 32 |
| abstract_inverted_index.Schwarz. | 54 |
| abstract_inverted_index.addition | 116 |
| abstract_inverted_index.consists | 107 |
| abstract_inverted_index.criteria | 44 |
| abstract_inverted_index.estimate | 66 |
| abstract_inverted_index.function | 41 |
| abstract_inverted_index.learning | 6, 69 |
| abstract_inverted_index.problems | 1 |
| abstract_inverted_index.proposal | 121 |
| abstract_inverted_index.setting, | 136 |
| abstract_inverted_index.candidate | 28 |
| abstract_inverted_index.extensive | 142 |
| abstract_inverted_index.framework | 63, 97 |
| abstract_inverted_index.objective | 40 |
| abstract_inverted_index.problems, | 13, 102 |
| abstract_inverted_index.problems. | 70 |
| abstract_inverted_index.procedure | 125 |
| abstract_inverted_index.proposing | 99 |
| abstract_inverted_index.selection | 12, 36, 101 |
| abstract_inverted_index.utilizing | 87 |
| abstract_inverted_index.consistent | 77 |
| abstract_inverted_index.estimation | 78 |
| abstract_inverted_index.formulated | 9 |
| abstract_inverted_index.introduces | 122 |
| abstract_inverted_index.loss-based | 68 |
| abstract_inverted_index.penalizing | 38 |
| abstract_inverted_index.pioneering | 49 |
| abstract_inverted_index.simulation | 143 |
| abstract_inverted_index.statistics | 3 |
| abstract_inverted_index.Generalized | 81 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.generalized | 61, 95 |
| abstract_inverted_index.information | 43 |
| abstract_inverted_index.potentially | 110 |
| abstract_inverted_index.regressions | 85 |
| abstract_inverted_index.theoretical | 118 |
| abstract_inverted_index.uncountable | 111 |
| abstract_inverted_index.consistently | 65 |
| abstract_inverted_index.expositions, | 119 |
| abstract_inverted_index.parsimonious | 22 |
| abstract_inverted_index.computational | 124 |
| abstract_inverted_index.developments. | 91 |
| abstract_inverted_index.implementation | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |