Constrained Instance and Class Reweighting for Robust Learning under Label Noise Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.05428
Deep neural networks have shown impressive performance in supervised learning, enabled by their ability to fit well to the provided training data. However, their performance is largely dependent on the quality of the training data and often degrades in the presence of noise. We propose a principled approach for tackling label noise with the aim of assigning importance weights to individual instances and class labels. Our method works by formulating a class of constrained optimization problems that yield simple closed form updates for these importance weights. The proposed optimization problems are solved per mini-batch which obviates the need of storing and updating the weights over the full dataset. Our optimization framework also provides a theoretical perspective on existing label smoothing heuristics for addressing label noise (such as label bootstrapping). We evaluate our method on several benchmark datasets and observe considerable performance gains in the presence of label noise.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.05428
- https://arxiv.org/pdf/2111.05428
- OA Status
- green
- Cited By
- 1
- References
- 42
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3212879647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212879647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.05428Digital Object Identifier
- Title
-
Constrained Instance and Class Reweighting for Robust Learning under Label NoiseWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-09Full publication date if available
- Authors
-
Abhishek Kumar, Ehsan AmidList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.05428Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.05428Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.05428Direct OA link when available
- Concepts
-
Computer science, Bootstrapping (finance), Noise (video), Machine learning, Smoothing, Heuristics, Class (philosophy), Artificial intelligence, Benchmark (surveying), Overfitting, Perspective (graphical), Artificial neural network, Data mining, Mathematics, Econometrics, Geography, Operating system, Image (mathematics), Geodesy, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212879647 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.05428 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.05428 |
| ids.mag | 3212879647 |
| ids.openalex | https://openalex.org/W3212879647 |
| fwci | |
| type | preprint |
| title | Constrained Instance and Class Reweighting for Robust Learning under Label Noise |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9832000136375427 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T10848 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9790999889373779 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Multi-Objective Optimization Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7309858202934265 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C207609745 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7206785678863525 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4944086 |
| concepts[1].display_name | Bootstrapping (finance) |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6963141560554504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6855077743530273 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C3770464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6654496192932129 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[4].display_name | Smoothing |
| concepts[5].id | https://openalex.org/C127705205 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6527824401855469 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[5].display_name | Heuristics |
| concepts[6].id | https://openalex.org/C2777212361 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6093718409538269 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[6].display_name | Class (philosophy) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.6019139885902405 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C185798385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5963539481163025 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[8].display_name | Benchmark (surveying) |
| concepts[9].id | https://openalex.org/C22019652 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4979984760284424 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[9].display_name | Overfitting |
| concepts[10].id | https://openalex.org/C12713177 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4345698058605194 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[10].display_name | Perspective (graphical) |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3815840780735016 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3610932230949402 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15937629342079163 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07089683413505554 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7309858202934265 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bootstrapping |
| keywords[1].score | 0.7206785678863525 |
| keywords[1].display_name | Bootstrapping (finance) |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.6963141560554504 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6855077743530273 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/smoothing |
| keywords[4].score | 0.6654496192932129 |
| keywords[4].display_name | Smoothing |
| keywords[5].id | https://openalex.org/keywords/heuristics |
| keywords[5].score | 0.6527824401855469 |
| keywords[5].display_name | Heuristics |
| keywords[6].id | https://openalex.org/keywords/class |
| keywords[6].score | 0.6093718409538269 |
| keywords[6].display_name | Class (philosophy) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.6019139885902405 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/benchmark |
| keywords[8].score | 0.5963539481163025 |
| keywords[8].display_name | Benchmark (surveying) |
| keywords[9].id | https://openalex.org/keywords/overfitting |
| keywords[9].score | 0.4979984760284424 |
| keywords[9].display_name | Overfitting |
| keywords[10].id | https://openalex.org/keywords/perspective |
| keywords[10].score | 0.4345698058605194 |
| keywords[10].display_name | Perspective (graphical) |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.3815840780735016 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3610932230949402 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.15937629342079163 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.07089683413505554 |
| keywords[14].display_name | Econometrics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.05428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.05428 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.05428 |
| locations[1].id | mag:3212879647 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2111.05428 |
| locations[2].id | doi:10.48550/arxiv.2111.05428 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2111.05428 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012487013 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6022-3068 |
| authorships[0].author.display_name | Abhishek Kumar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[0].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[0].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[0].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Google (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abhishek Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Google,,,,, |
| authorships[1].author.id | https://openalex.org/A5056776503 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6097-0226 |
| authorships[1].author.display_name | Ehsan Amid |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[1].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[1].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[1].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Google (United States) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ehsan Amid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Google,,,,, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.05428 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Constrained Instance and Class Reweighting for Robust Learning under Label Noise |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W3175360614, https://openalex.org/W3006052202, https://openalex.org/W3199296934, https://openalex.org/W2951246847, https://openalex.org/W3174747606, https://openalex.org/W2985955054, https://openalex.org/W2044200706, https://openalex.org/W2963371670, https://openalex.org/W2903561002, https://openalex.org/W1806550384, https://openalex.org/W2952140663, https://openalex.org/W1177539115, https://openalex.org/W3175562011, https://openalex.org/W2766377147, https://openalex.org/W2949882887, https://openalex.org/W2605572715, https://openalex.org/W3101812930, https://openalex.org/W3112728372, https://openalex.org/W3022772288, https://openalex.org/W2597241293 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.05428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.05428 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.05428 |
| primary_location.id | pmh:oai:arXiv.org:2111.05428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.05428 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.05428 |
| publication_date | 2021-11-09 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2752971446, https://openalex.org/W3137695714, https://openalex.org/W3110483780, https://openalex.org/W2996108195, https://openalex.org/W3034432520, https://openalex.org/W3035753488, https://openalex.org/W2049633694, https://openalex.org/W3092841986, https://openalex.org/W2183341477, https://openalex.org/W2125133553, https://openalex.org/W2963371670, https://openalex.org/W3147674054, https://openalex.org/W3131236472, https://openalex.org/W3100954504, https://openalex.org/W2970308742, https://openalex.org/W2518143623, https://openalex.org/W3037144731, https://openalex.org/W3122542623, https://openalex.org/W2150070703, https://openalex.org/W2963081269, https://openalex.org/W1514928307, https://openalex.org/W2963735582, https://openalex.org/W3102576821, https://openalex.org/W3103846556, https://openalex.org/W2606711863, https://openalex.org/W3173685130, https://openalex.org/W2121056381, https://openalex.org/W3123795136, https://openalex.org/W2290452516, https://openalex.org/W3034185248, https://openalex.org/W2766966154, https://openalex.org/W2941387380, https://openalex.org/W3035429562, https://openalex.org/W2964309657, https://openalex.org/W2991349609, https://openalex.org/W2042587503, https://openalex.org/W1921293667, https://openalex.org/W2963939124, https://openalex.org/W2302255633, https://openalex.org/W2033468335, https://openalex.org/W3128010498, https://openalex.org/W2963966702 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 45, 70, 113 |
| abstract_inverted_index.We | 43, 129 |
| abstract_inverted_index.as | 126 |
| abstract_inverted_index.by | 11, 68 |
| abstract_inverted_index.in | 7, 38, 142 |
| abstract_inverted_index.is | 25 |
| abstract_inverted_index.of | 31, 41, 55, 72, 98, 145 |
| abstract_inverted_index.on | 28, 116, 133 |
| abstract_inverted_index.to | 14, 17, 59 |
| abstract_inverted_index.Our | 65, 108 |
| abstract_inverted_index.The | 86 |
| abstract_inverted_index.aim | 54 |
| abstract_inverted_index.and | 35, 62, 100, 137 |
| abstract_inverted_index.are | 90 |
| abstract_inverted_index.fit | 15 |
| abstract_inverted_index.for | 48, 82, 121 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.per | 92 |
| abstract_inverted_index.the | 18, 29, 32, 39, 53, 96, 102, 105, 143 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.data | 34 |
| abstract_inverted_index.form | 80 |
| abstract_inverted_index.full | 106 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.need | 97 |
| abstract_inverted_index.over | 104 |
| abstract_inverted_index.that | 76 |
| abstract_inverted_index.well | 16 |
| abstract_inverted_index.with | 52 |
| abstract_inverted_index.(such | 125 |
| abstract_inverted_index.class | 63, 71 |
| abstract_inverted_index.data. | 21 |
| abstract_inverted_index.gains | 141 |
| abstract_inverted_index.label | 50, 118, 123, 127, 146 |
| abstract_inverted_index.noise | 51, 124 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.shown | 4 |
| abstract_inverted_index.their | 12, 23 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.works | 67 |
| abstract_inverted_index.yield | 77 |
| abstract_inverted_index.closed | 79 |
| abstract_inverted_index.method | 66, 132 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.noise. | 42, 147 |
| abstract_inverted_index.simple | 78 |
| abstract_inverted_index.solved | 91 |
| abstract_inverted_index.ability | 13 |
| abstract_inverted_index.enabled | 10 |
| abstract_inverted_index.labels. | 64 |
| abstract_inverted_index.largely | 26 |
| abstract_inverted_index.observe | 138 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.quality | 30 |
| abstract_inverted_index.several | 134 |
| abstract_inverted_index.storing | 99 |
| abstract_inverted_index.updates | 81 |
| abstract_inverted_index.weights | 58, 103 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.approach | 47 |
| abstract_inverted_index.dataset. | 107 |
| abstract_inverted_index.datasets | 136 |
| abstract_inverted_index.degrades | 37 |
| abstract_inverted_index.evaluate | 130 |
| abstract_inverted_index.existing | 117 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.obviates | 95 |
| abstract_inverted_index.presence | 40, 144 |
| abstract_inverted_index.problems | 75, 89 |
| abstract_inverted_index.proposed | 87 |
| abstract_inverted_index.provided | 19 |
| abstract_inverted_index.provides | 112 |
| abstract_inverted_index.tackling | 49 |
| abstract_inverted_index.training | 20, 33 |
| abstract_inverted_index.updating | 101 |
| abstract_inverted_index.weights. | 85 |
| abstract_inverted_index.assigning | 56 |
| abstract_inverted_index.benchmark | 135 |
| abstract_inverted_index.dependent | 27 |
| abstract_inverted_index.framework | 110 |
| abstract_inverted_index.instances | 61 |
| abstract_inverted_index.learning, | 9 |
| abstract_inverted_index.smoothing | 119 |
| abstract_inverted_index.addressing | 122 |
| abstract_inverted_index.heuristics | 120 |
| abstract_inverted_index.importance | 57, 84 |
| abstract_inverted_index.impressive | 5 |
| abstract_inverted_index.individual | 60 |
| abstract_inverted_index.mini-batch | 93 |
| abstract_inverted_index.principled | 46 |
| abstract_inverted_index.supervised | 8 |
| abstract_inverted_index.constrained | 73 |
| abstract_inverted_index.formulating | 69 |
| abstract_inverted_index.performance | 6, 24, 140 |
| abstract_inverted_index.perspective | 115 |
| abstract_inverted_index.theoretical | 114 |
| abstract_inverted_index.considerable | 139 |
| abstract_inverted_index.optimization | 74, 88, 109 |
| abstract_inverted_index.bootstrapping). | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |