Constrained Instance and Class Reweighting for Robust Learning under\n Label Noise Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.05428
Deep neural networks have shown impressive performance in supervised\nlearning, enabled by their ability to fit well to the provided training data.\nHowever, their performance is largely dependent on the quality of the training\ndata and often degrades in the presence of noise. We propose a principled\napproach for tackling label noise with the aim of assigning importance weights\nto individual instances and class labels. Our method works by formulating a\nclass of constrained optimization problems that yield simple closed form\nupdates for these importance weights. The proposed optimization problems are\nsolved per mini-batch which obviates the need of storing and updating the\nweights over the full dataset. Our optimization framework also provides a\ntheoretical perspective on existing label smoothing heuristics for addressing\nlabel noise (such as label bootstrapping). We evaluate our method on several\nbenchmark datasets and observe considerable performance gains in the presence\nof label noise.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.05428
- https://arxiv.org/pdf/2111.05428
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225463537
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225463537Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.05428Digital Object Identifier
- Title
-
Constrained Instance and Class Reweighting for Robust Learning under\n Label NoiseWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-09Full publication date if available
- Authors
-
Abhishek Kumar, Ehsan AmidList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.05428Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.05428Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.05428Direct OA link when available
- Concepts
-
Bootstrapping (finance), Computer science, Noise (video), Machine learning, Smoothing, Heuristics, Benchmark (surveying), Class (philosophy), Artificial intelligence, Overfitting, Perspective (graphical), Artificial neural network, Data mining, Mathematics, Image (mathematics), Operating system, Computer vision, Econometrics, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 4, 2022: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225463537 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.05428 |
| ids.openalex | https://openalex.org/W4225463537 |
| fwci | 0.84662145 |
| type | preprint |
| title | Constrained Instance and Class Reweighting for Robust Learning under\n Label Noise |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9380000233650208 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C207609745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7385431528091431 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4944086 |
| concepts[0].display_name | Bootstrapping (finance) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7362393140792847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7077111601829529 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6922382116317749 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C3770464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.665520966053009 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[4].display_name | Smoothing |
| concepts[5].id | https://openalex.org/C127705205 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6635363101959229 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[5].display_name | Heuristics |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6214388012886047 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6173864603042603 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.6119158864021301 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C22019652 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5655351877212524 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[9].display_name | Overfitting |
| concepts[10].id | https://openalex.org/C12713177 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4541834890842438 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[10].display_name | Perspective (graphical) |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38118696212768555 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35557907819747925 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14575359225273132 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C149782125 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[17].display_name | Econometrics |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/bootstrapping |
| keywords[0].score | 0.7385431528091431 |
| keywords[0].display_name | Bootstrapping (finance) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7362393140792847 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.7077111601829529 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6922382116317749 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/smoothing |
| keywords[4].score | 0.665520966053009 |
| keywords[4].display_name | Smoothing |
| keywords[5].id | https://openalex.org/keywords/heuristics |
| keywords[5].score | 0.6635363101959229 |
| keywords[5].display_name | Heuristics |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.6214388012886047 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.6173864603042603 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.6119158864021301 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/overfitting |
| keywords[9].score | 0.5655351877212524 |
| keywords[9].display_name | Overfitting |
| keywords[10].id | https://openalex.org/keywords/perspective |
| keywords[10].score | 0.4541834890842438 |
| keywords[10].display_name | Perspective (graphical) |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.38118696212768555 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.35557907819747925 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.14575359225273132 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.05428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.05428 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.05428 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5100403739 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8848-2889 |
| authorships[0].author.display_name | Abhishek Kumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kumar, Abhishek |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056776503 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6097-0226 |
| authorships[1].author.display_name | Ehsan Amid |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Amid, Ehsan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.05428 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Constrained Instance and Class Reweighting for Robust Learning under\n Label Noise |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W2913541211, https://openalex.org/W2020510022 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.05428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.05428 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.05428 |
| primary_location.id | pmh:oai:arXiv.org:2111.05428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.05428 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.05428 |
| publication_date | 2021-11-09 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42 |
| abstract_inverted_index.We | 40, 118 |
| abstract_inverted_index.as | 115 |
| abstract_inverted_index.by | 10, 63 |
| abstract_inverted_index.in | 7, 35, 130 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.of | 29, 38, 51, 66, 90 |
| abstract_inverted_index.on | 26, 106, 122 |
| abstract_inverted_index.to | 13, 16 |
| abstract_inverted_index.Our | 60, 99 |
| abstract_inverted_index.The | 79 |
| abstract_inverted_index.aim | 50 |
| abstract_inverted_index.and | 32, 57, 92, 125 |
| abstract_inverted_index.fit | 14 |
| abstract_inverted_index.for | 44, 75, 111 |
| abstract_inverted_index.our | 120 |
| abstract_inverted_index.per | 84 |
| abstract_inverted_index.the | 17, 27, 30, 36, 49, 88, 96, 131 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.also | 102 |
| abstract_inverted_index.full | 97 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.need | 89 |
| abstract_inverted_index.over | 95 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.well | 15 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.(such | 114 |
| abstract_inverted_index.class | 58 |
| abstract_inverted_index.gains | 129 |
| abstract_inverted_index.label | 46, 108, 116, 133 |
| abstract_inverted_index.noise | 47, 113 |
| abstract_inverted_index.often | 33 |
| abstract_inverted_index.shown | 4 |
| abstract_inverted_index.their | 11, 21 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.works | 62 |
| abstract_inverted_index.yield | 71 |
| abstract_inverted_index.closed | 73 |
| abstract_inverted_index.method | 61, 121 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.noise. | 39 |
| abstract_inverted_index.simple | 72 |
| abstract_inverted_index.ability | 12 |
| abstract_inverted_index.enabled | 9 |
| abstract_inverted_index.labels. | 59 |
| abstract_inverted_index.largely | 24 |
| abstract_inverted_index.observe | 126 |
| abstract_inverted_index.propose | 41 |
| abstract_inverted_index.quality | 28 |
| abstract_inverted_index.storing | 91 |
| abstract_inverted_index.a\nclass | 65 |
| abstract_inverted_index.dataset. | 98 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.degrades | 34 |
| abstract_inverted_index.evaluate | 119 |
| abstract_inverted_index.existing | 107 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.noise.\n | 134 |
| abstract_inverted_index.obviates | 87 |
| abstract_inverted_index.presence | 37 |
| abstract_inverted_index.problems | 69, 82 |
| abstract_inverted_index.proposed | 80 |
| abstract_inverted_index.provided | 18 |
| abstract_inverted_index.provides | 103 |
| abstract_inverted_index.tackling | 45 |
| abstract_inverted_index.training | 19 |
| abstract_inverted_index.updating | 93 |
| abstract_inverted_index.weights. | 78 |
| abstract_inverted_index.assigning | 52 |
| abstract_inverted_index.dependent | 25 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.instances | 56 |
| abstract_inverted_index.smoothing | 109 |
| abstract_inverted_index.heuristics | 110 |
| abstract_inverted_index.importance | 53, 77 |
| abstract_inverted_index.impressive | 5 |
| abstract_inverted_index.individual | 55 |
| abstract_inverted_index.mini-batch | 85 |
| abstract_inverted_index.are\nsolved | 83 |
| abstract_inverted_index.constrained | 67 |
| abstract_inverted_index.formulating | 64 |
| abstract_inverted_index.performance | 6, 22, 128 |
| abstract_inverted_index.perspective | 105 |
| abstract_inverted_index.weights\nto | 54 |
| abstract_inverted_index.considerable | 127 |
| abstract_inverted_index.optimization | 68, 81, 100 |
| abstract_inverted_index.presence\nof | 132 |
| abstract_inverted_index.the\nweights | 94 |
| abstract_inverted_index.form\nupdates | 74 |
| abstract_inverted_index.a\ntheoretical | 104 |
| abstract_inverted_index.training\ndata | 31 |
| abstract_inverted_index.bootstrapping). | 117 |
| abstract_inverted_index.data.\nHowever, | 20 |
| abstract_inverted_index.addressing\nlabel | 112 |
| abstract_inverted_index.several\nbenchmark | 123 |
| abstract_inverted_index.principled\napproach | 43 |
| abstract_inverted_index.supervised\nlearning, | 8 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.79792482 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |