Constraining a data-driven CO 2 flux model by ecosystem and atmospheric observations using atmospheric transport Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-2025-2097
Global estimates of the terrestrial land-atmosphere flux of CO2 (NEE) from data-driven models differ widely depending on their underlying data and methodology. Bottom-up models trained on eddy-covariance data are most informative at the ecosystem-level. Top-down models, such as atmospheric inversions, produce regional and global results consistent with the observed atmospheric growth rate, accurately capturing the interannual variability (IAV) of NEE. Both approaches have limitations estimating NEE across scales: Bottom-up models can miss large-scale dynamics of NEE when aggregated globally. Top-down approaches have difficulty relating the large-scale atmospheric signal to biophysical processes at smaller scales. To address these limitations, we create a model that uses a hybrid combination of direct observations and atmospheric dynamics to integrate ecosystem-level eddy-covariance data and atmospheric CO2 mole fraction data into a single coherent ecosystem-level flux model. Aggregated globally, our new model estimates an annual sink with a low bias, and consistent IAV when compared with independent estimates. The IAV of the estimated NEE is closer in magnitude to an ensemble of atmospheric inversions, and our model produces a higher temporal coefficient of correlation with these data than state-of-the-art bottom-up data-driven models. This improvement in IAV is achieved without direct access to the observed variability of the atmosphere: the model is trained using only one year of daytime observations from 3 tall-tower observatories. No atmospheric information is available to the model during the production of global NEE estimates. This shows the efficiency of our method in synthesizing top-down information into bottom-up mapping of flux-environment relationships.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-2025-2097
- https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410521766
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410521766Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-2025-2097Digital Object Identifier
- Title
-
Constraining a data-driven CO 2 flux model by ecosystem and atmospheric observations using atmospheric transportWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-20Full publication date if available
- Authors
-
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, Ana BastosList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-2025-2097Publisher landing page
- PDF URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdfDirect OA link when available
- Concepts
-
Flux (metallurgy), Environmental science, Atmospheric sciences, Ecosystem, Atmospheric models, Meteorology, Atmosphere (unit), Physics, Chemistry, Ecology, Biology, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410521766 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-2025-2097 |
| ids.doi | https://doi.org/10.5194/egusphere-2025-2097 |
| ids.openalex | https://openalex.org/W4410521766 |
| fwci | 0.0 |
| type | preprint |
| title | Constraining a data-driven CO 2 flux model by ecosystem and atmospheric observations using atmospheric transport |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11588 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Atmospheric and Environmental Gas Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C68709404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6367398500442505 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1134475 |
| concepts[0].display_name | Flux (metallurgy) |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6109926104545593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C91586092 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5767382383346558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[2].display_name | Atmospheric sciences |
| concepts[3].id | https://openalex.org/C110872660 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5067310929298401 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[3].display_name | Ecosystem |
| concepts[4].id | https://openalex.org/C62279395 |
| concepts[4].level | 3 |
| concepts[4].score | 0.43665605783462524 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[4].display_name | Atmospheric models |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2987736463546753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C65440619 |
| concepts[6].level | 2 |
| concepts[6].score | 0.27687209844589233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177974 |
| concepts[6].display_name | Atmosphere (unit) |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2623690664768219 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.15767568349838257 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C18903297 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12440139055252075 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[9].display_name | Ecology |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C178790620 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[11].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/flux |
| keywords[0].score | 0.6367398500442505 |
| keywords[0].display_name | Flux (metallurgy) |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.6109926104545593 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[2].score | 0.5767382383346558 |
| keywords[2].display_name | Atmospheric sciences |
| keywords[3].id | https://openalex.org/keywords/ecosystem |
| keywords[3].score | 0.5067310929298401 |
| keywords[3].display_name | Ecosystem |
| keywords[4].id | https://openalex.org/keywords/atmospheric-models |
| keywords[4].score | 0.43665605783462524 |
| keywords[4].display_name | Atmospheric models |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.2987736463546753 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/atmosphere |
| keywords[6].score | 0.27687209844589233 |
| keywords[6].display_name | Atmosphere (unit) |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.2623690664768219 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.15767568349838257 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/ecology |
| keywords[9].score | 0.12440139055252075 |
| keywords[9].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.5194/egusphere-2025-2097 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-2025-2097 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063267891 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5650-7340 |
| authorships[0].author.display_name | Samuel Upton |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samuel Upton |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071721504 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5736-1112 |
| authorships[1].author.display_name | Markus Reichstein |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Markus Reichstein |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071349296 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8166-2070 |
| authorships[2].author.display_name | Wouter Peters |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wouter Peters |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085008782 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5447-3968 |
| authorships[3].author.display_name | Santiago Botía |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Santiago Botía |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037687266 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4663-2420 |
| authorships[4].author.display_name | Jacob A. Nelson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jacob A. Nelson |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5067588216 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1681-9304 |
| authorships[5].author.display_name | Sophia Walther |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sophia Walther |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5071538196 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1860-297X |
| authorships[6].author.display_name | Martin Jung |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Martin Jung |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5054048104 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9614-0435 |
| authorships[7].author.display_name | Fabian Gans |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Fabian Gans |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5054635818 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7747-6475 |
| authorships[8].author.display_name | László Haszpra |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | László Haszpra |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5052018420 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-7368-7806 |
| authorships[9].author.display_name | Ana Bastos |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Ana Bastos |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Constraining a data-driven CO 2 flux model by ecosystem and atmospheric observations using atmospheric transport |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11588 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Atmospheric and Environmental Gas Dynamics |
| related_works | https://openalex.org/W4386428464, https://openalex.org/W4402051915, https://openalex.org/W2511865884, https://openalex.org/W3112576225, https://openalex.org/W2007279158, https://openalex.org/W2169631737, https://openalex.org/W2039735409, https://openalex.org/W2134474058, https://openalex.org/W2078849780, https://openalex.org/W2061825287 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-2025-2097 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-2097 |
| primary_location.id | doi:10.5194/egusphere-2025-2097 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2097/egusphere-2025-2097.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-2097 |
| publication_date | 2025-05-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 215 |
| abstract_inverted_index.a | 101, 105, 126, 142, 173 |
| abstract_inverted_index.No | 218 |
| abstract_inverted_index.To | 95 |
| abstract_inverted_index.an | 138, 164 |
| abstract_inverted_index.as | 38 |
| abstract_inverted_index.at | 32, 92 |
| abstract_inverted_index.in | 161, 189, 240 |
| abstract_inverted_index.is | 159, 191, 205, 221 |
| abstract_inverted_index.of | 3, 8, 59, 75, 108, 155, 166, 177, 200, 211, 229, 237, 247 |
| abstract_inverted_index.on | 17, 26 |
| abstract_inverted_index.to | 89, 114, 163, 196, 223 |
| abstract_inverted_index.we | 99 |
| abstract_inverted_index.CO2 | 9, 121 |
| abstract_inverted_index.IAV | 147, 154, 190 |
| abstract_inverted_index.NEE | 66, 76, 158, 231 |
| abstract_inverted_index.The | 153 |
| abstract_inverted_index.and | 21, 43, 111, 119, 145, 169 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.can | 71 |
| abstract_inverted_index.low | 143 |
| abstract_inverted_index.new | 135 |
| abstract_inverted_index.one | 209 |
| abstract_inverted_index.our | 134, 170, 238 |
| abstract_inverted_index.the | 4, 33, 48, 55, 85, 156, 197, 201, 203, 224, 227, 235 |
| abstract_inverted_index.Both | 61 |
| abstract_inverted_index.NEE. | 60 |
| abstract_inverted_index.This | 187, 233 |
| abstract_inverted_index.data | 20, 28, 118, 124, 181 |
| abstract_inverted_index.flux | 7, 130 |
| abstract_inverted_index.from | 11, 214 |
| abstract_inverted_index.have | 63, 82 |
| abstract_inverted_index.into | 125, 244 |
| abstract_inverted_index.miss | 72 |
| abstract_inverted_index.mole | 122 |
| abstract_inverted_index.most | 30 |
| abstract_inverted_index.only | 208 |
| abstract_inverted_index.sink | 140 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.than | 182 |
| abstract_inverted_index.that | 103 |
| abstract_inverted_index.uses | 104 |
| abstract_inverted_index.when | 77, 148 |
| abstract_inverted_index.with | 47, 141, 150, 179 |
| abstract_inverted_index.year | 210 |
| abstract_inverted_index.(IAV) | 58 |
| abstract_inverted_index.(NEE) | 10 |
| abstract_inverted_index.bias, | 144 |
| abstract_inverted_index.model | 102, 136, 171, 204, 225 |
| abstract_inverted_index.rate, | 52 |
| abstract_inverted_index.shows | 234 |
| abstract_inverted_index.their | 18 |
| abstract_inverted_index.these | 97, 180 |
| abstract_inverted_index.using | 207 |
| abstract_inverted_index.Global | 1 |
| abstract_inverted_index.access | 195 |
| abstract_inverted_index.across | 67 |
| abstract_inverted_index.annual | 139 |
| abstract_inverted_index.closer | 160 |
| abstract_inverted_index.create | 100 |
| abstract_inverted_index.differ | 14 |
| abstract_inverted_index.direct | 109, 194 |
| abstract_inverted_index.during | 226 |
| abstract_inverted_index.global | 44, 230 |
| abstract_inverted_index.growth | 51 |
| abstract_inverted_index.higher | 174 |
| abstract_inverted_index.hybrid | 106 |
| abstract_inverted_index.method | 239 |
| abstract_inverted_index.model. | 131 |
| abstract_inverted_index.models | 13, 24, 70 |
| abstract_inverted_index.signal | 88 |
| abstract_inverted_index.single | 127 |
| abstract_inverted_index.widely | 15 |
| abstract_inverted_index.address | 96 |
| abstract_inverted_index.daytime | 212 |
| abstract_inverted_index.mapping | 246 |
| abstract_inverted_index.models, | 36 |
| abstract_inverted_index.models. | 186 |
| abstract_inverted_index.produce | 41 |
| abstract_inverted_index.results | 45 |
| abstract_inverted_index.scales. | 94 |
| abstract_inverted_index.scales: | 68 |
| abstract_inverted_index.smaller | 93 |
| abstract_inverted_index.trained | 25, 206 |
| abstract_inverted_index.without | 193 |
| abstract_inverted_index.Top-down | 35, 80 |
| abstract_inverted_index.achieved | 192 |
| abstract_inverted_index.coherent | 128 |
| abstract_inverted_index.compared | 149 |
| abstract_inverted_index.dynamics | 74, 113 |
| abstract_inverted_index.ensemble | 165 |
| abstract_inverted_index.fraction | 123 |
| abstract_inverted_index.observed | 49, 198 |
| abstract_inverted_index.produces | 172 |
| abstract_inverted_index.regional | 42 |
| abstract_inverted_index.relating | 84 |
| abstract_inverted_index.temporal | 175 |
| abstract_inverted_index.top-down | 242 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Bottom-up | 23, 69 |
| abstract_inverted_index.available | 222 |
| abstract_inverted_index.bottom-up | 184, 245 |
| abstract_inverted_index.capturing | 54 |
| abstract_inverted_index.depending | 16 |
| abstract_inverted_index.estimated | 157 |
| abstract_inverted_index.estimates | 2, 137 |
| abstract_inverted_index.globally, | 133 |
| abstract_inverted_index.globally. | 79 |
| abstract_inverted_index.integrate | 115 |
| abstract_inverted_index.magnitude | 162 |
| abstract_inverted_index.processes | 91 |
| abstract_inverted_index.Aggregated | 132 |
| abstract_inverted_index.accurately | 53 |
| abstract_inverted_index.aggregated | 78 |
| abstract_inverted_index.approaches | 62, 81 |
| abstract_inverted_index.consistent | 46, 146 |
| abstract_inverted_index.difficulty | 83 |
| abstract_inverted_index.efficiency | 236 |
| abstract_inverted_index.estimates. | 152, 232 |
| abstract_inverted_index.estimating | 65 |
| abstract_inverted_index.production | 228 |
| abstract_inverted_index.tall-tower | 216 |
| abstract_inverted_index.underlying | 19 |
| abstract_inverted_index.atmosphere: | 202 |
| abstract_inverted_index.atmospheric | 39, 50, 87, 112, 120, 167, 219 |
| abstract_inverted_index.biophysical | 90 |
| abstract_inverted_index.coefficient | 176 |
| abstract_inverted_index.combination | 107 |
| abstract_inverted_index.correlation | 178 |
| abstract_inverted_index.data-driven | 12, 185 |
| abstract_inverted_index.improvement | 188 |
| abstract_inverted_index.independent | 151 |
| abstract_inverted_index.information | 220, 243 |
| abstract_inverted_index.informative | 31 |
| abstract_inverted_index.interannual | 56 |
| abstract_inverted_index.inversions, | 40, 168 |
| abstract_inverted_index.large-scale | 73, 86 |
| abstract_inverted_index.limitations | 64 |
| abstract_inverted_index.terrestrial | 5 |
| abstract_inverted_index.variability | 57, 199 |
| abstract_inverted_index.limitations, | 98 |
| abstract_inverted_index.methodology. | 22 |
| abstract_inverted_index.observations | 110, 213 |
| abstract_inverted_index.synthesizing | 241 |
| abstract_inverted_index.observatories. | 217 |
| abstract_inverted_index.relationships. | 249 |
| abstract_inverted_index.ecosystem-level | 116, 129 |
| abstract_inverted_index.eddy-covariance | 27, 117 |
| abstract_inverted_index.land-atmosphere | 6 |
| abstract_inverted_index.ecosystem-level. | 34 |
| abstract_inverted_index.flux-environment | 248 |
| abstract_inverted_index.state-of-the-art | 183 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.19005733 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |