Constraining solar wind transport model parameters using Bayesian analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.07897
We apply nested-sampling (NS) Bayesian analysis [AshtonEA22] to a model for the transport of MHD-scale solar wind fluctuations. The dual objectives are to obtain improved constraints on parameters present in the turbulence transport model (TTM) and to support comparisons of distinct versions of the TTM. The TTMs analysed are essentially 1D steady-state presented in [BreechEA08] that describe the radial evolution of the energy, correlation length, and normalized cross helicity of the fluctuations, together with the proton temperature, in prescribed background solar wind fields. Modelled effects present in the TTM include nonlinear turbulence interactions, shear driving, and energy injection associated with pickup-ions. These effects involve adjustable parameters that we seek to constrain. Bayesian analysis supports the efficient searching of a parameter space for the 'best' set of TTM parameter values. More advanced use provides the parameter's posterior distribution: its probability given the data, and the model. This can be used to understand the uncertainty in the provided 'best' values for the parameters and therefore the uncertainty in the suggested TTM solutions/predictions. By using NS, we can calculate the Bayesian evidence for each TTM and objectively determine which best fits the given observational data. Based on the analysis of the datasets and TTM employed, we recommend use of the 2D TTM with von Karman-Howarth parameters $α\approx 0.16$ and $β\approx 0.10$ and parameter assumptions from existing literature. It is important to include the pickup ion effects in the lengthscale evolution equation by assuming $Z^{2β/α}λ= const$ is locally conserved. This work is readily extended to more sophisticated solar wind models. Although more work is required to generate datasets with associated errors, which is necessary for accurate Bayesian modelling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.07897
- https://arxiv.org/pdf/2412.07897
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405300954
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405300954Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.07897Digital Object Identifier
- Title
-
Constraining solar wind transport model parameters using Bayesian analysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-10Full publication date if available
- Authors
-
Mark D. Bishop, Sean Ougthon, T. N. Parashar, Y. C. PerrottList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.07897Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.07897Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.07897Direct OA link when available
- Concepts
-
Bayesian probability, Environmental science, Meteorology, Computer science, Econometrics, Atmospheric sciences, Geography, Physics, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405300954 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.07897 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.07897 |
| ids.openalex | https://openalex.org/W4405300954 |
| fwci | |
| type | preprint |
| title | Constraining solar wind transport model parameters using Bayesian analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11276 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9121999740600586 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Solar Radiation and Photovoltaics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107673813 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5525625944137573 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[0].display_name | Bayesian probability |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.504158616065979 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C153294291 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48306161165237427 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[2].display_name | Meteorology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3911413252353668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.344854474067688 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C91586092 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3262181878089905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[5].display_name | Atmospheric sciences |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22812730073928833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2255098819732666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1982879936695099 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11949139833450317 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/bayesian-probability |
| keywords[0].score | 0.5525625944137573 |
| keywords[0].display_name | Bayesian probability |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.504158616065979 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/meteorology |
| keywords[2].score | 0.48306161165237427 |
| keywords[2].display_name | Meteorology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3911413252353668 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.344854474067688 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[5].score | 0.3262181878089905 |
| keywords[5].display_name | Atmospheric sciences |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.22812730073928833 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.2255098819732666 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.1982879936695099 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.11949139833450317 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.07897 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.07897 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.07897 |
| locations[1].id | doi:10.48550/arxiv.2412.07897 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.07897 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5051990260 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2832-6913 |
| authorships[0].author.display_name | Mark D. Bishop |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bishop, Mark |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115405300 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sean Ougthon |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ougthon, Sean |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065866313 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0602-8381 |
| authorships[2].author.display_name | T. N. Parashar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Parashar, Tulasi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004467625 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6255-8240 |
| authorships[3].author.display_name | Y. C. Perrott |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Perrott, Yvette |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.07897 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-13T00:00:00 |
| display_name | Constraining solar wind transport model parameters using Bayesian analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11276 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9121999740600586 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Solar Radiation and Photovoltaics |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3007404728, https://openalex.org/W2374021052, https://openalex.org/W2110536732, https://openalex.org/W1984740135, https://openalex.org/W3117958761, https://openalex.org/W1984514811, https://openalex.org/W4280521631, https://openalex.org/W2094967319 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.07897 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.07897 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.07897 |
| primary_location.id | pmh:oai:arXiv.org:2412.07897 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.07897 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.07897 |
| publication_date | 2024-12-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 118 |
| abstract_inverted_index.1D | 50 |
| abstract_inverted_index.2D | 207 |
| abstract_inverted_index.By | 170 |
| abstract_inverted_index.It | 224 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.be | 147 |
| abstract_inverted_index.by | 238 |
| abstract_inverted_index.in | 29, 53, 77, 86, 153, 165, 233 |
| abstract_inverted_index.is | 225, 242, 247, 259, 268 |
| abstract_inverted_index.of | 13, 39, 42, 60, 69, 117, 125, 196, 205 |
| abstract_inverted_index.on | 26, 193 |
| abstract_inverted_index.to | 7, 22, 36, 109, 149, 227, 250, 261 |
| abstract_inverted_index.we | 107, 173, 202 |
| abstract_inverted_index.NS, | 172 |
| abstract_inverted_index.TTM | 88, 126, 168, 181, 200, 208 |
| abstract_inverted_index.The | 18, 45 |
| abstract_inverted_index.and | 35, 65, 95, 142, 161, 182, 199, 215, 218 |
| abstract_inverted_index.are | 21, 48 |
| abstract_inverted_index.can | 146, 174 |
| abstract_inverted_index.for | 10, 121, 158, 179, 270 |
| abstract_inverted_index.ion | 231 |
| abstract_inverted_index.its | 137 |
| abstract_inverted_index.set | 124 |
| abstract_inverted_index.the | 11, 30, 43, 57, 61, 70, 74, 87, 114, 122, 133, 140, 143, 151, 154, 159, 163, 166, 176, 188, 194, 197, 206, 229, 234 |
| abstract_inverted_index.use | 131, 204 |
| abstract_inverted_index.von | 210 |
| abstract_inverted_index.(NS) | 3 |
| abstract_inverted_index.More | 129 |
| abstract_inverted_index.TTM. | 44 |
| abstract_inverted_index.TTMs | 46 |
| abstract_inverted_index.This | 145, 245 |
| abstract_inverted_index.best | 186 |
| abstract_inverted_index.dual | 19 |
| abstract_inverted_index.each | 180 |
| abstract_inverted_index.fits | 187 |
| abstract_inverted_index.from | 221 |
| abstract_inverted_index.more | 251, 257 |
| abstract_inverted_index.seek | 108 |
| abstract_inverted_index.that | 55, 106 |
| abstract_inverted_index.used | 148 |
| abstract_inverted_index.wind | 16, 81, 254 |
| abstract_inverted_index.with | 73, 99, 209, 264 |
| abstract_inverted_index.work | 246, 258 |
| abstract_inverted_index.(TTM) | 34 |
| abstract_inverted_index.0.10$ | 217 |
| abstract_inverted_index.0.16$ | 214 |
| abstract_inverted_index.Based | 192 |
| abstract_inverted_index.These | 101 |
| abstract_inverted_index.apply | 1 |
| abstract_inverted_index.cross | 67 |
| abstract_inverted_index.data, | 141 |
| abstract_inverted_index.data. | 191 |
| abstract_inverted_index.given | 139, 189 |
| abstract_inverted_index.model | 9, 33 |
| abstract_inverted_index.shear | 93 |
| abstract_inverted_index.solar | 15, 80, 253 |
| abstract_inverted_index.space | 120 |
| abstract_inverted_index.using | 171 |
| abstract_inverted_index.which | 185, 267 |
| abstract_inverted_index.'best' | 123, 156 |
| abstract_inverted_index.const$ | 241 |
| abstract_inverted_index.energy | 96 |
| abstract_inverted_index.model. | 144 |
| abstract_inverted_index.obtain | 23 |
| abstract_inverted_index.pickup | 230 |
| abstract_inverted_index.proton | 75 |
| abstract_inverted_index.radial | 58 |
| abstract_inverted_index.values | 157 |
| abstract_inverted_index.effects | 84, 102, 232 |
| abstract_inverted_index.energy, | 62 |
| abstract_inverted_index.errors, | 266 |
| abstract_inverted_index.fields. | 82 |
| abstract_inverted_index.include | 89, 228 |
| abstract_inverted_index.involve | 103 |
| abstract_inverted_index.length, | 64 |
| abstract_inverted_index.locally | 243 |
| abstract_inverted_index.models. | 255 |
| abstract_inverted_index.present | 28, 85 |
| abstract_inverted_index.readily | 248 |
| abstract_inverted_index.support | 37 |
| abstract_inverted_index.values. | 128 |
| abstract_inverted_index.Although | 256 |
| abstract_inverted_index.Bayesian | 4, 111, 177, 272 |
| abstract_inverted_index.Modelled | 83 |
| abstract_inverted_index.accurate | 271 |
| abstract_inverted_index.advanced | 130 |
| abstract_inverted_index.analysed | 47 |
| abstract_inverted_index.analysis | 5, 112, 195 |
| abstract_inverted_index.assuming | 239 |
| abstract_inverted_index.datasets | 198, 263 |
| abstract_inverted_index.describe | 56 |
| abstract_inverted_index.distinct | 40 |
| abstract_inverted_index.driving, | 94 |
| abstract_inverted_index.equation | 237 |
| abstract_inverted_index.evidence | 178 |
| abstract_inverted_index.existing | 222 |
| abstract_inverted_index.extended | 249 |
| abstract_inverted_index.generate | 262 |
| abstract_inverted_index.helicity | 68 |
| abstract_inverted_index.improved | 24 |
| abstract_inverted_index.provided | 155 |
| abstract_inverted_index.provides | 132 |
| abstract_inverted_index.required | 260 |
| abstract_inverted_index.supports | 113 |
| abstract_inverted_index.together | 72 |
| abstract_inverted_index.versions | 41 |
| abstract_inverted_index.MHD-scale | 14 |
| abstract_inverted_index.calculate | 175 |
| abstract_inverted_index.determine | 184 |
| abstract_inverted_index.efficient | 115 |
| abstract_inverted_index.employed, | 201 |
| abstract_inverted_index.evolution | 59, 236 |
| abstract_inverted_index.important | 226 |
| abstract_inverted_index.injection | 97 |
| abstract_inverted_index.necessary | 269 |
| abstract_inverted_index.nonlinear | 90 |
| abstract_inverted_index.parameter | 119, 127, 219 |
| abstract_inverted_index.posterior | 135 |
| abstract_inverted_index.presented | 52 |
| abstract_inverted_index.recommend | 203 |
| abstract_inverted_index.searching | 116 |
| abstract_inverted_index.suggested | 167 |
| abstract_inverted_index.therefore | 162 |
| abstract_inverted_index.transport | 12, 32 |
| abstract_inverted_index.$α\approx | 213 |
| abstract_inverted_index.$β\approx | 216 |
| abstract_inverted_index.adjustable | 104 |
| abstract_inverted_index.associated | 98, 265 |
| abstract_inverted_index.background | 79 |
| abstract_inverted_index.conserved. | 244 |
| abstract_inverted_index.constrain. | 110 |
| abstract_inverted_index.modelling. | 273 |
| abstract_inverted_index.normalized | 66 |
| abstract_inverted_index.objectives | 20 |
| abstract_inverted_index.parameters | 27, 105, 160, 212 |
| abstract_inverted_index.prescribed | 78 |
| abstract_inverted_index.turbulence | 31, 91 |
| abstract_inverted_index.understand | 150 |
| abstract_inverted_index.assumptions | 220 |
| abstract_inverted_index.comparisons | 38 |
| abstract_inverted_index.constraints | 25 |
| abstract_inverted_index.correlation | 63 |
| abstract_inverted_index.essentially | 49 |
| abstract_inverted_index.lengthscale | 235 |
| abstract_inverted_index.literature. | 223 |
| abstract_inverted_index.objectively | 183 |
| abstract_inverted_index.parameter's | 134 |
| abstract_inverted_index.probability | 138 |
| abstract_inverted_index.uncertainty | 152, 164 |
| abstract_inverted_index.[AshtonEA22] | 6 |
| abstract_inverted_index.[BreechEA08] | 54 |
| abstract_inverted_index.pickup-ions. | 100 |
| abstract_inverted_index.steady-state | 51 |
| abstract_inverted_index.temperature, | 76 |
| abstract_inverted_index.distribution: | 136 |
| abstract_inverted_index.fluctuations, | 71 |
| abstract_inverted_index.fluctuations. | 17 |
| abstract_inverted_index.interactions, | 92 |
| abstract_inverted_index.observational | 190 |
| abstract_inverted_index.sophisticated | 252 |
| abstract_inverted_index.$Z^{2β/α}λ= | 240 |
| abstract_inverted_index.Karman-Howarth | 211 |
| abstract_inverted_index.nested-sampling | 2 |
| abstract_inverted_index.solutions/predictions. | 169 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |