ConStruct: Structural Distillation of Foundation Models for Prototype-Based Weakly Supervised Histopathology Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.10316
Weakly supervised semantic segmentation (WSSS) in histopathology relies heavily on classification backbones, yet these models often localize only the most discriminative regions and struggle to capture the full spatial extent of tissue structures. Vision-language models such as CONCH offer rich semantic alignment and morphology-aware representations, while modern segmentation backbones like SegFormer preserve fine-grained spatial cues. However, combining these complementary strengths remains challenging, especially under weak supervision and without dense annotations. We propose a prototype learning framework for WSSS in histopathological images that integrates morphology-aware representations from CONCH, multi-scale structural cues from SegFormer, and text-guided semantic alignment to produce prototypes that are simultaneously semantically discriminative and spatially coherent. To effectively leverage these heterogeneous sources, we introduce text-guided prototype initialization that incorporates pathology descriptions to generate more complete and semantically accurate pseudo-masks. A structural distillation mechanism transfers spatial knowledge from SegFormer to preserve fine-grained morphological patterns and local tissue boundaries during prototype learning. Our approach produces high-quality pseudo masks without pixel-level annotations, improves localization completeness, and enhances semantic consistency across tissue types. Experiments on BCSS-WSSS datasets demonstrate that our prototype learning framework outperforms existing WSSS methods while remaining computationally efficient through frozen foundation model backbones and lightweight trainable adapters.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.10316
- https://arxiv.org/pdf/2512.10316
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417295371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417295371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.10316Digital Object Identifier
- Title
-
ConStruct: Structural Distillation of Foundation Models for Prototype-Based Weakly Supervised Histopathology SegmentationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Khang Le, Ha Thach, Anh M. Vu, Thuy Thi Bich Vo, Hong-Han Huynh, David J. Yang, Minh Hoang Le, Thanh-Huy Nguyen, Akash Awasthi, Chandra Mohan, Zhu Han, Hien Van NguyenList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.10316Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.10316Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.10316Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417295371 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.10316 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.10316 |
| ids.openalex | https://openalex.org/W4417295371 |
| fwci | |
| type | preprint |
| title | ConStruct: Structural Distillation of Foundation Models for Prototype-Based Weakly Supervised Histopathology Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.10316 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.10316 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.10316 |
| locations[1].id | doi:10.48550/arxiv.2512.10316 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.10316 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5104006945 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khang Le |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Le, Khang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030294531 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ha Thach |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thach, Ha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113373780 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Anh M. Vu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vu, Anh M. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045354585 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2142-6874 |
| authorships[3].author.display_name | Thuy Thi Bich Vo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vo, Trang T. K. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071521945 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0083-4913 |
| authorships[4].author.display_name | Hong-Han Huynh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huynh, Han H. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041976538 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8308-0621 |
| authorships[5].author.display_name | David J. Yang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yang, David |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5048194853 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0908-1188 |
| authorships[6].author.display_name | Minh Hoang Le |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Le, Minh H. N. |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5103260009 |
| authorships[7].author.orcid | https://orcid.org/0009-0003-9355-5434 |
| authorships[7].author.display_name | Thanh-Huy Nguyen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Nguyen, Thanh-Huy |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5088671507 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8383-0637 |
| authorships[8].author.display_name | Akash Awasthi |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Awasthi, Akash |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5042585597 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7896-5740 |
| authorships[9].author.display_name | Chandra Mohan |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Mohan, Chandra |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5063667378 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6606-5822 |
| authorships[10].author.display_name | Zhu Han |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Han, Zhu |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5101985554 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7280-2182 |
| authorships[11].author.display_name | Hien Van Nguyen |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Van Nguyen, Hien |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.10316 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-13T00:00:00 |
| display_name | ConStruct: Structural Distillation of Foundation Models for Prototype-Based Weakly Supervised Histopathology Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T23:15:11.045004 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.10316 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.10316 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.10316 |
| primary_location.id | pmh:oai:arXiv.org:2512.10316 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.10316 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.10316 |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 130 |
| abstract_inverted_index.a | 72 |
| abstract_inverted_index.To | 107 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.in | 5, 78 |
| abstract_inverted_index.of | 30 |
| abstract_inverted_index.on | 9, 171 |
| abstract_inverted_index.to | 24, 96, 122, 139 |
| abstract_inverted_index.we | 113 |
| abstract_inverted_index.Our | 151 |
| abstract_inverted_index.and | 22, 42, 66, 92, 104, 126, 144, 163, 193 |
| abstract_inverted_index.are | 100 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.our | 176 |
| abstract_inverted_index.the | 18, 26 |
| abstract_inverted_index.yet | 12 |
| abstract_inverted_index.WSSS | 77, 182 |
| abstract_inverted_index.cues | 89 |
| abstract_inverted_index.from | 85, 90, 137 |
| abstract_inverted_index.full | 27 |
| abstract_inverted_index.like | 49 |
| abstract_inverted_index.more | 124 |
| abstract_inverted_index.most | 19 |
| abstract_inverted_index.only | 17 |
| abstract_inverted_index.rich | 39 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.that | 81, 99, 118, 175 |
| abstract_inverted_index.weak | 64 |
| abstract_inverted_index.CONCH | 37 |
| abstract_inverted_index.cues. | 54 |
| abstract_inverted_index.dense | 68 |
| abstract_inverted_index.local | 145 |
| abstract_inverted_index.masks | 156 |
| abstract_inverted_index.model | 191 |
| abstract_inverted_index.offer | 38 |
| abstract_inverted_index.often | 15 |
| abstract_inverted_index.these | 13, 57, 110 |
| abstract_inverted_index.under | 63 |
| abstract_inverted_index.while | 45, 184 |
| abstract_inverted_index.(WSSS) | 4 |
| abstract_inverted_index.CONCH, | 86 |
| abstract_inverted_index.Weakly | 0 |
| abstract_inverted_index.across | 167 |
| abstract_inverted_index.during | 148 |
| abstract_inverted_index.extent | 29 |
| abstract_inverted_index.frozen | 189 |
| abstract_inverted_index.images | 80 |
| abstract_inverted_index.models | 14, 34 |
| abstract_inverted_index.modern | 46 |
| abstract_inverted_index.pseudo | 155 |
| abstract_inverted_index.relies | 7 |
| abstract_inverted_index.tissue | 31, 146, 168 |
| abstract_inverted_index.types. | 169 |
| abstract_inverted_index.capture | 25 |
| abstract_inverted_index.heavily | 8 |
| abstract_inverted_index.methods | 183 |
| abstract_inverted_index.produce | 97 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.regions | 21 |
| abstract_inverted_index.remains | 60 |
| abstract_inverted_index.spatial | 28, 53, 135 |
| abstract_inverted_index.through | 188 |
| abstract_inverted_index.without | 67, 157 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.accurate | 128 |
| abstract_inverted_index.approach | 152 |
| abstract_inverted_index.complete | 125 |
| abstract_inverted_index.datasets | 173 |
| abstract_inverted_index.enhances | 164 |
| abstract_inverted_index.existing | 181 |
| abstract_inverted_index.generate | 123 |
| abstract_inverted_index.improves | 160 |
| abstract_inverted_index.learning | 74, 178 |
| abstract_inverted_index.leverage | 109 |
| abstract_inverted_index.localize | 16 |
| abstract_inverted_index.patterns | 143 |
| abstract_inverted_index.preserve | 51, 140 |
| abstract_inverted_index.produces | 153 |
| abstract_inverted_index.semantic | 2, 40, 94, 165 |
| abstract_inverted_index.sources, | 112 |
| abstract_inverted_index.struggle | 23 |
| abstract_inverted_index.BCSS-WSSS | 172 |
| abstract_inverted_index.SegFormer | 50, 138 |
| abstract_inverted_index.adapters. | 196 |
| abstract_inverted_index.alignment | 41, 95 |
| abstract_inverted_index.backbones | 48, 192 |
| abstract_inverted_index.coherent. | 106 |
| abstract_inverted_index.combining | 56 |
| abstract_inverted_index.efficient | 187 |
| abstract_inverted_index.framework | 75, 179 |
| abstract_inverted_index.introduce | 114 |
| abstract_inverted_index.knowledge | 136 |
| abstract_inverted_index.learning. | 150 |
| abstract_inverted_index.mechanism | 133 |
| abstract_inverted_index.pathology | 120 |
| abstract_inverted_index.prototype | 73, 116, 149, 177 |
| abstract_inverted_index.remaining | 185 |
| abstract_inverted_index.spatially | 105 |
| abstract_inverted_index.strengths | 59 |
| abstract_inverted_index.trainable | 195 |
| abstract_inverted_index.transfers | 134 |
| abstract_inverted_index.SegFormer, | 91 |
| abstract_inverted_index.backbones, | 11 |
| abstract_inverted_index.boundaries | 147 |
| abstract_inverted_index.especially | 62 |
| abstract_inverted_index.foundation | 190 |
| abstract_inverted_index.integrates | 82 |
| abstract_inverted_index.prototypes | 98 |
| abstract_inverted_index.structural | 88, 131 |
| abstract_inverted_index.supervised | 1 |
| abstract_inverted_index.Experiments | 170 |
| abstract_inverted_index.consistency | 166 |
| abstract_inverted_index.demonstrate | 174 |
| abstract_inverted_index.effectively | 108 |
| abstract_inverted_index.lightweight | 194 |
| abstract_inverted_index.multi-scale | 87 |
| abstract_inverted_index.outperforms | 180 |
| abstract_inverted_index.pixel-level | 158 |
| abstract_inverted_index.structures. | 32 |
| abstract_inverted_index.supervision | 65 |
| abstract_inverted_index.text-guided | 93, 115 |
| abstract_inverted_index.annotations, | 159 |
| abstract_inverted_index.annotations. | 69 |
| abstract_inverted_index.challenging, | 61 |
| abstract_inverted_index.descriptions | 121 |
| abstract_inverted_index.distillation | 132 |
| abstract_inverted_index.fine-grained | 52, 141 |
| abstract_inverted_index.high-quality | 154 |
| abstract_inverted_index.incorporates | 119 |
| abstract_inverted_index.localization | 161 |
| abstract_inverted_index.segmentation | 3, 47 |
| abstract_inverted_index.semantically | 102, 127 |
| abstract_inverted_index.complementary | 58 |
| abstract_inverted_index.completeness, | 162 |
| abstract_inverted_index.heterogeneous | 111 |
| abstract_inverted_index.morphological | 142 |
| abstract_inverted_index.pseudo-masks. | 129 |
| abstract_inverted_index.classification | 10 |
| abstract_inverted_index.discriminative | 20, 103 |
| abstract_inverted_index.histopathology | 6 |
| abstract_inverted_index.initialization | 117 |
| abstract_inverted_index.simultaneously | 101 |
| abstract_inverted_index.Vision-language | 33 |
| abstract_inverted_index.computationally | 186 |
| abstract_inverted_index.representations | 84 |
| abstract_inverted_index.morphology-aware | 43, 83 |
| abstract_inverted_index.representations, | 44 |
| abstract_inverted_index.histopathological | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |