Constructing selection hyper-heuristics for open vehicle routing with time delay neural networks using multiple experts Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.knosys.2024.111731
Hyper-heuristics are general purpose search methods for solving computationally difficult problems. A selection hyper-heuristic is composed of two key components: a heuristic selection method and move acceptance criterion. Under an iterative single-point search framework, a solution is modified by selecting and applying a predefined low-level heuristic, with a decision then taken to accept or reject the resulting solution. Designing a selection hyper-heuristic is an extremely challenging task. In this study, we investigate computer-aided design of a selection hyper-heuristic for the open vehicle routing problem. A time delay neural network is used as an offline apprenticeship learning method. Our approach first observes the search behaviour of multiple expert human-designed selection hyper-heuristics on a selected sample of training instances, before automatically generating a selection hyper-heuristic capable of solving unseen instances effectively. The proposed approach is tested on open vehicle routing problem instances of different sizes to examine the performance and generality of the selection hyper-heuristics generated. Improved performance is demonstrated over a set of well-known benchmarks from the literature when compared to using the existing expert systems directly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.knosys.2024.111731
- OA Status
- hybrid
- Cited By
- 9
- References
- 101
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394912678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394912678Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.knosys.2024.111731Digital Object Identifier
- Title
-
Constructing selection hyper-heuristics for open vehicle routing with time delay neural networks using multiple expertsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-18Full publication date if available
- Authors
-
Raras Tyasnurita, Ender Özcan, John H. Drake, Shahriar AstaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.knosys.2024.111731Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.knosys.2024.111731Direct OA link when available
- Concepts
-
Heuristics, Selection (genetic algorithm), Computer science, Vehicle routing problem, Routing (electronic design automation), Artificial neural network, Artificial intelligence, Machine learning, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
101Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394912678 |
|---|---|
| doi | https://doi.org/10.1016/j.knosys.2024.111731 |
| ids.doi | https://doi.org/10.1016/j.knosys.2024.111731 |
| ids.openalex | https://openalex.org/W4394912678 |
| fwci | 6.12937647 |
| type | article |
| title | Constructing selection hyper-heuristics for open vehicle routing with time delay neural networks using multiple experts |
| biblio.issue | |
| biblio.volume | 295 |
| biblio.last_page | 111731 |
| biblio.first_page | 111731 |
| topics[0].id | https://openalex.org/T10567 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9901000261306763 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Vehicle Routing Optimization Methods |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9889000058174133 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T11814 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Advanced Manufacturing and Logistics Optimization |
| is_xpac | False |
| apc_list.value | 3130 |
| apc_list.currency | USD |
| apc_list.value_usd | 3130 |
| apc_paid.value | 3130 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3130 |
| concepts[0].id | https://openalex.org/C127705205 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8364360332489014 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[0].display_name | Heuristics |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7202091217041016 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6492431163787842 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C123784306 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6179864406585693 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q944041 |
| concepts[3].display_name | Vehicle routing problem |
| concepts[4].id | https://openalex.org/C74172769 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5817282795906067 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[4].display_name | Routing (electronic design automation) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5606849193572998 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4279189109802246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4012691378593445 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22131448984146118 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/heuristics |
| keywords[0].score | 0.8364360332489014 |
| keywords[0].display_name | Heuristics |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.7202091217041016 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6492431163787842 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/vehicle-routing-problem |
| keywords[3].score | 0.6179864406585693 |
| keywords[3].display_name | Vehicle routing problem |
| keywords[4].id | https://openalex.org/keywords/routing |
| keywords[4].score | 0.5817282795906067 |
| keywords[4].display_name | Routing (electronic design automation) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5606849193572998 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4279189109802246 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4012691378593445 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.22131448984146118 |
| keywords[8].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1016/j.knosys.2024.111731 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10169007 |
| locations[0].source.issn | 0950-7051, 1872-7409 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0950-7051 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Knowledge-Based Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Knowledge-Based Systems |
| locations[0].landing_page_url | https://doi.org/10.1016/j.knosys.2024.111731 |
| locations[1].id | pmh:oai:nottingham-repository.worktribe.com:34632998 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402481 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Repository@Nottingham (University of Nottingham) |
| locations[1].source.host_organization | https://openalex.org/I142263535 |
| locations[1].source.host_organization_name | University of Nottingham |
| locations[1].source.host_organization_lineage | https://openalex.org/I142263535 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://nottingham-repository.worktribe.com/output/34632998 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5001719969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6066-5982 |
| authorships[0].author.display_name | Raras Tyasnurita |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[0].affiliations[0].raw_affiliation_string | Computational Optimisation and Learning Lab, University of Nottingham, UK |
| authorships[0].institutions[0].id | https://openalex.org/I142263535 |
| authorships[0].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Nottingham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Raras Tyasnurita |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computational Optimisation and Learning Lab, University of Nottingham, UK |
| authorships[1].author.id | https://openalex.org/A5020026827 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0276-1391 |
| authorships[1].author.display_name | Ender Özcan |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[1].affiliations[0].raw_affiliation_string | Computational Optimisation and Learning Lab, University of Nottingham, UK |
| authorships[1].institutions[0].id | https://openalex.org/I142263535 |
| authorships[1].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Nottingham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ender Özcan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computational Optimisation and Learning Lab, University of Nottingham, UK |
| authorships[2].author.id | https://openalex.org/A5031005435 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6699-8323 |
| authorships[2].author.display_name | John H. Drake |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153648349 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing and Mathematical Sciences, University of Leicester, UK |
| authorships[2].institutions[0].id | https://openalex.org/I153648349 |
| authorships[2].institutions[0].ror | https://ror.org/04h699437 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153648349 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Leicester |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | John H. Drake |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Computing and Mathematical Sciences, University of Leicester, UK |
| authorships[3].author.id | https://openalex.org/A5003488448 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7733-2500 |
| authorships[3].author.display_name | Shahriar Asta |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802549117 |
| authorships[3].affiliations[0].raw_affiliation_string | TD Bank Group, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I2802549117 |
| authorships[3].institutions[0].ror | https://ror.org/04jjb9549 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I2802549117 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | TD Bank Group |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shahriar Asta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | TD Bank Group, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.knosys.2024.111731 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Constructing selection hyper-heuristics for open vehicle routing with time delay neural networks using multiple experts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10567 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9901000261306763 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Vehicle Routing Optimization Methods |
| related_works | https://openalex.org/W2280422768, https://openalex.org/W3143197806, https://openalex.org/W4252555497, https://openalex.org/W4312143452, https://openalex.org/W2018691209, https://openalex.org/W3121175838, https://openalex.org/W3016293053, https://openalex.org/W3119129187, https://openalex.org/W2470251263, https://openalex.org/W2193306078 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.knosys.2024.111731 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10169007 |
| best_oa_location.source.issn | 0950-7051, 1872-7409 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0950-7051 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Knowledge-Based Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Knowledge-Based Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.knosys.2024.111731 |
| primary_location.id | doi:10.1016/j.knosys.2024.111731 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10169007 |
| primary_location.source.issn | 0950-7051, 1872-7409 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0950-7051 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Knowledge-Based Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Knowledge-Based Systems |
| primary_location.landing_page_url | https://doi.org/10.1016/j.knosys.2024.111731 |
| publication_date | 2024-04-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2262276395, https://openalex.org/W6723259236, https://openalex.org/W2018679674, https://openalex.org/W3125642975, https://openalex.org/W2518529723, https://openalex.org/W1997768424, https://openalex.org/W2028646596, https://openalex.org/W2072441740, https://openalex.org/W2967783393, https://openalex.org/W2941110559, https://openalex.org/W6632244569, https://openalex.org/W6736522627, https://openalex.org/W6650265722, https://openalex.org/W6681030992, https://openalex.org/W2026566141, https://openalex.org/W1973230775, https://openalex.org/W2270353641, https://openalex.org/W6608101782, https://openalex.org/W2061447389, https://openalex.org/W6743672777, https://openalex.org/W2755078414, https://openalex.org/W4281814819, https://openalex.org/W192263341, https://openalex.org/W1415548470, https://openalex.org/W2097006520, https://openalex.org/W3158882438, https://openalex.org/W2091126685, https://openalex.org/W2140494408, https://openalex.org/W6604528125, https://openalex.org/W3048848613, https://openalex.org/W6732874137, https://openalex.org/W2025369528, https://openalex.org/W6650465476, https://openalex.org/W2008647976, https://openalex.org/W2081272667, https://openalex.org/W6842923570, https://openalex.org/W2134067165, https://openalex.org/W6631986375, https://openalex.org/W6747525326, https://openalex.org/W3203365843, https://openalex.org/W4385455310, https://openalex.org/W6636246027, https://openalex.org/W6646076835, https://openalex.org/W6680758990, https://openalex.org/W6633419082, https://openalex.org/W2056382536, https://openalex.org/W3091167051, https://openalex.org/W4376851188, https://openalex.org/W2117671523, https://openalex.org/W4241459083, https://openalex.org/W6649386095, https://openalex.org/W2135457387, https://openalex.org/W2983729319, https://openalex.org/W2001455661, https://openalex.org/W2158663270, https://openalex.org/W2144097134, https://openalex.org/W2402146185, https://openalex.org/W2071076724, https://openalex.org/W2956685526, https://openalex.org/W3193590387, https://openalex.org/W3195280498, https://openalex.org/W4226391412, https://openalex.org/W2111563176, https://openalex.org/W174230839, https://openalex.org/W2062045653, https://openalex.org/W15274158, https://openalex.org/W2027678739, https://openalex.org/W1963972489, https://openalex.org/W2059715080, https://openalex.org/W2527653733, https://openalex.org/W4296285746, https://openalex.org/W1978186990, https://openalex.org/W1986014385, https://openalex.org/W6675544747, https://openalex.org/W6635330445, https://openalex.org/W6638610016, https://openalex.org/W2559741365, https://openalex.org/W6631684097, https://openalex.org/W2170505850, https://openalex.org/W2115358726, https://openalex.org/W2164330572, https://openalex.org/W2128404755, https://openalex.org/W2761554819, https://openalex.org/W2255042724, https://openalex.org/W2251503907, https://openalex.org/W2002011878, https://openalex.org/W2781324069, https://openalex.org/W1490308602, https://openalex.org/W1717440967, https://openalex.org/W3144756387, https://openalex.org/W2480762398, https://openalex.org/W2754021078, https://openalex.org/W2499916382, https://openalex.org/W2506540455, https://openalex.org/W2358128336, https://openalex.org/W4232500316, https://openalex.org/W4319215637, https://openalex.org/W1873332500, https://openalex.org/W1530666108, https://openalex.org/W4242811198, https://openalex.org/W4241785498 |
| referenced_works_count | 101 |
| abstract_inverted_index.A | 11, 84 |
| abstract_inverted_index.a | 20, 34, 42, 47, 59, 75, 111, 120, 159 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.an | 29, 63, 92 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.is | 14, 36, 62, 89, 132, 156 |
| abstract_inverted_index.of | 16, 74, 104, 114, 124, 140, 149, 161 |
| abstract_inverted_index.on | 110, 134 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.to | 51, 143, 169 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.Our | 97 |
| abstract_inverted_index.The | 129 |
| abstract_inverted_index.and | 24, 40, 147 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.for | 6, 78 |
| abstract_inverted_index.key | 18 |
| abstract_inverted_index.set | 160 |
| abstract_inverted_index.the | 55, 79, 101, 145, 150, 165, 171 |
| abstract_inverted_index.two | 17 |
| abstract_inverted_index.from | 164 |
| abstract_inverted_index.move | 25 |
| abstract_inverted_index.open | 80, 135 |
| abstract_inverted_index.over | 158 |
| abstract_inverted_index.then | 49 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.time | 85 |
| abstract_inverted_index.used | 90 |
| abstract_inverted_index.when | 167 |
| abstract_inverted_index.with | 46 |
| abstract_inverted_index.Under | 28 |
| abstract_inverted_index.delay | 86 |
| abstract_inverted_index.first | 99 |
| abstract_inverted_index.sizes | 142 |
| abstract_inverted_index.taken | 50 |
| abstract_inverted_index.task. | 66 |
| abstract_inverted_index.using | 170 |
| abstract_inverted_index.accept | 52 |
| abstract_inverted_index.before | 117 |
| abstract_inverted_index.design | 73 |
| abstract_inverted_index.expert | 106, 173 |
| abstract_inverted_index.method | 23 |
| abstract_inverted_index.neural | 87 |
| abstract_inverted_index.reject | 54 |
| abstract_inverted_index.sample | 113 |
| abstract_inverted_index.search | 4, 32, 102 |
| abstract_inverted_index.study, | 69 |
| abstract_inverted_index.tested | 133 |
| abstract_inverted_index.unseen | 126 |
| abstract_inverted_index.capable | 123 |
| abstract_inverted_index.examine | 144 |
| abstract_inverted_index.general | 2 |
| abstract_inverted_index.method. | 96 |
| abstract_inverted_index.methods | 5 |
| abstract_inverted_index.network | 88 |
| abstract_inverted_index.offline | 93 |
| abstract_inverted_index.problem | 138 |
| abstract_inverted_index.purpose | 3 |
| abstract_inverted_index.routing | 82, 137 |
| abstract_inverted_index.solving | 7, 125 |
| abstract_inverted_index.systems | 174 |
| abstract_inverted_index.vehicle | 81, 136 |
| abstract_inverted_index.Improved | 154 |
| abstract_inverted_index.applying | 41 |
| abstract_inverted_index.approach | 98, 131 |
| abstract_inverted_index.compared | 168 |
| abstract_inverted_index.composed | 15 |
| abstract_inverted_index.decision | 48 |
| abstract_inverted_index.existing | 172 |
| abstract_inverted_index.learning | 95 |
| abstract_inverted_index.modified | 37 |
| abstract_inverted_index.multiple | 105 |
| abstract_inverted_index.observes | 100 |
| abstract_inverted_index.problem. | 83 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.selected | 112 |
| abstract_inverted_index.solution | 35 |
| abstract_inverted_index.training | 115 |
| abstract_inverted_index.Designing | 58 |
| abstract_inverted_index.behaviour | 103 |
| abstract_inverted_index.different | 141 |
| abstract_inverted_index.difficult | 9 |
| abstract_inverted_index.directly. | 175 |
| abstract_inverted_index.extremely | 64 |
| abstract_inverted_index.heuristic | 21 |
| abstract_inverted_index.instances | 127, 139 |
| abstract_inverted_index.iterative | 30 |
| abstract_inverted_index.low-level | 44 |
| abstract_inverted_index.problems. | 10 |
| abstract_inverted_index.resulting | 56 |
| abstract_inverted_index.selecting | 39 |
| abstract_inverted_index.selection | 12, 22, 60, 76, 108, 121, 151 |
| abstract_inverted_index.solution. | 57 |
| abstract_inverted_index.acceptance | 26 |
| abstract_inverted_index.benchmarks | 163 |
| abstract_inverted_index.criterion. | 27 |
| abstract_inverted_index.framework, | 33 |
| abstract_inverted_index.generality | 148 |
| abstract_inverted_index.generated. | 153 |
| abstract_inverted_index.generating | 119 |
| abstract_inverted_index.heuristic, | 45 |
| abstract_inverted_index.instances, | 116 |
| abstract_inverted_index.literature | 166 |
| abstract_inverted_index.predefined | 43 |
| abstract_inverted_index.well-known | 162 |
| abstract_inverted_index.challenging | 65 |
| abstract_inverted_index.components: | 19 |
| abstract_inverted_index.investigate | 71 |
| abstract_inverted_index.performance | 146, 155 |
| abstract_inverted_index.demonstrated | 157 |
| abstract_inverted_index.effectively. | 128 |
| abstract_inverted_index.single-point | 31 |
| abstract_inverted_index.automatically | 118 |
| abstract_inverted_index.apprenticeship | 94 |
| abstract_inverted_index.computer-aided | 72 |
| abstract_inverted_index.human-designed | 107 |
| abstract_inverted_index.computationally | 8 |
| abstract_inverted_index.hyper-heuristic | 13, 61, 77, 122 |
| abstract_inverted_index.Hyper-heuristics | 0 |
| abstract_inverted_index.hyper-heuristics | 109, 152 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5031005435 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I153648349 |
| citation_normalized_percentile.value | 0.94180221 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |