CONSUMER PURCHASING BEHAVIOR ANALYSIS USING CVS POS DATA Article Swipe
Kaoru Kuramoto
,
Yosuke Kurihara
,
Satoshi Kumagai
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.20472/iac.2020.053.010
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.20472/iac.2020.053.010
In this study, the purchase behavior of customers is analyzed using the purchase history data of convenience stores for one year. Therefore, considering the number of visits to the store, the purchase price, and personal attributes, we use the maximum likelihood method to estimate the customer's selection probability of ?continuation? and ?separation?. AIC is used as a model evaluation index.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20472/iac.2020.053.010
- http://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494
- OA Status
- gold
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3027586599
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3027586599Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20472/iac.2020.053.010Digital Object Identifier
- Title
-
CONSUMER PURCHASING BEHAVIOR ANALYSIS USING CVS POS DATAWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Kaoru Kuramoto, Yosuke Kurihara, Satoshi KumagaiList of authors in order
- Landing page
-
https://doi.org/10.20472/iac.2020.053.010Publisher landing page
- PDF URL
-
https://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494Direct OA link when available
- Concepts
-
Purchasing, Continuation, Advertising, Selection (genetic algorithm), Consumer behaviour, Index (typography), Maximum likelihood, Business, Marketing, Computer science, Statistics, Mathematics, Artificial intelligence, World Wide Web, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3027586599 |
|---|---|
| doi | https://doi.org/10.20472/iac.2020.053.010 |
| ids.doi | https://doi.org/10.20472/iac.2020.053.010 |
| ids.mag | 3027586599 |
| ids.openalex | https://openalex.org/W3027586599 |
| fwci | 0.0 |
| type | preprint |
| title | CONSUMER PURCHASING BEHAVIOR ANALYSIS USING CVS POS DATA |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12384 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9032999873161316 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Customer churn and segmentation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778813691 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7842238545417786 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369832 |
| concepts[0].display_name | Purchasing |
| concepts[1].id | https://openalex.org/C88626702 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5252173542976379 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1128903 |
| concepts[1].display_name | Continuation |
| concepts[2].id | https://openalex.org/C112698675 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5037190318107605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q37038 |
| concepts[2].display_name | Advertising |
| concepts[3].id | https://openalex.org/C81917197 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4972229301929474 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[3].display_name | Selection (genetic algorithm) |
| concepts[4].id | https://openalex.org/C23213687 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4871911406517029 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q301468 |
| concepts[4].display_name | Consumer behaviour |
| concepts[5].id | https://openalex.org/C2777382242 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4695844054222107 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[5].display_name | Index (typography) |
| concepts[6].id | https://openalex.org/C49781872 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4363236725330353 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[6].display_name | Maximum likelihood |
| concepts[7].id | https://openalex.org/C144133560 |
| concepts[7].level | 0 |
| concepts[7].score | 0.41404736042022705 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[7].display_name | Business |
| concepts[8].id | https://openalex.org/C162853370 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37628287076950073 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[8].display_name | Marketing |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2986299991607666 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.25172173976898193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09774798154830933 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07045620679855347 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.057689011096954346 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/purchasing |
| keywords[0].score | 0.7842238545417786 |
| keywords[0].display_name | Purchasing |
| keywords[1].id | https://openalex.org/keywords/continuation |
| keywords[1].score | 0.5252173542976379 |
| keywords[1].display_name | Continuation |
| keywords[2].id | https://openalex.org/keywords/advertising |
| keywords[2].score | 0.5037190318107605 |
| keywords[2].display_name | Advertising |
| keywords[3].id | https://openalex.org/keywords/selection |
| keywords[3].score | 0.4972229301929474 |
| keywords[3].display_name | Selection (genetic algorithm) |
| keywords[4].id | https://openalex.org/keywords/consumer-behaviour |
| keywords[4].score | 0.4871911406517029 |
| keywords[4].display_name | Consumer behaviour |
| keywords[5].id | https://openalex.org/keywords/index |
| keywords[5].score | 0.4695844054222107 |
| keywords[5].display_name | Index (typography) |
| keywords[6].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[6].score | 0.4363236725330353 |
| keywords[6].display_name | Maximum likelihood |
| keywords[7].id | https://openalex.org/keywords/business |
| keywords[7].score | 0.41404736042022705 |
| keywords[7].display_name | Business |
| keywords[8].id | https://openalex.org/keywords/marketing |
| keywords[8].score | 0.37628287076950073 |
| keywords[8].display_name | Marketing |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.2986299991607666 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.25172173976898193 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.09774798154830933 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.07045620679855347 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/world-wide-web |
| keywords[13].score | 0.057689011096954346 |
| keywords[13].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.20472/iac.2020.053.010 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | http://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 53rd International Academic Conference, Dubai |
| locations[0].landing_page_url | https://doi.org/10.20472/iac.2020.053.010 |
| locations[1].id | mag:3027586599 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RePEc: Research Papers in Economics |
| locations[1].source.host_organization | https://openalex.org/I77793887 |
| locations[1].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[1].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | RePEc: Research Papers in Economics |
| locations[1].landing_page_url | https://EconPapers.repec.org/RePEc:sek:iacpro:10012494 |
| locations[2].id | pmh:oai:RePEc:sek:iacpro:10012494 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | preprint |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content/detail?cid=100&iid=010&rid=12494 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032584472 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kaoru Kuramoto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaoru Kuramoto |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090187549 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4592-0807 |
| authorships[1].author.display_name | Yosuke Kurihara |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yosuke Kurihara |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005115448 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Satoshi Kumagai |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Satoshi Kumagai |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CONSUMER PURCHASING BEHAVIOR ANALYSIS USING CVS POS DATA |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12384 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9032999873161316 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Customer churn and segmentation |
| related_works | https://openalex.org/W3125028387, https://openalex.org/W2362085248, https://openalex.org/W1983989695, https://openalex.org/W2289626947, https://openalex.org/W2633697529, https://openalex.org/W2978689784, https://openalex.org/W2023695356, https://openalex.org/W3125895392, https://openalex.org/W2040237155, https://openalex.org/W2058404651, https://openalex.org/W1535975765, https://openalex.org/W2050693969, https://openalex.org/W2860927424, https://openalex.org/W3176448220, https://openalex.org/W2766113531, https://openalex.org/W2012573794, https://openalex.org/W2139700594, https://openalex.org/W2414706719, https://openalex.org/W3019059201, https://openalex.org/W2898273411 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.20472/iac.2020.053.010 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 53rd International Academic Conference, Dubai |
| best_oa_location.landing_page_url | https://doi.org/10.20472/iac.2020.053.010 |
| primary_location.id | doi:10.20472/iac.2020.053.010 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | http://iises.net/proceedings/iises-international-academic-conference-dubai/table-of-content?cid=100&iid=010&rid=12494 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 53rd International Academic Conference, Dubai |
| primary_location.landing_page_url | https://doi.org/10.20472/iac.2020.053.010 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.is | 8, 53 |
| abstract_inverted_index.of | 6, 15, 25, 48 |
| abstract_inverted_index.to | 27, 42 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.AIC | 52 |
| abstract_inverted_index.and | 33, 50 |
| abstract_inverted_index.for | 18 |
| abstract_inverted_index.one | 19 |
| abstract_inverted_index.the | 3, 11, 23, 28, 30, 38, 44 |
| abstract_inverted_index.use | 37 |
| abstract_inverted_index.data | 14 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.used | 54 |
| abstract_inverted_index.model | 57 |
| abstract_inverted_index.using | 10 |
| abstract_inverted_index.year. | 20 |
| abstract_inverted_index.index. | 59 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.number | 24 |
| abstract_inverted_index.price, | 32 |
| abstract_inverted_index.store, | 29 |
| abstract_inverted_index.stores | 17 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.visits | 26 |
| abstract_inverted_index.history | 13 |
| abstract_inverted_index.maximum | 39 |
| abstract_inverted_index.analyzed | 9 |
| abstract_inverted_index.behavior | 5 |
| abstract_inverted_index.estimate | 43 |
| abstract_inverted_index.personal | 34 |
| abstract_inverted_index.purchase | 4, 12, 31 |
| abstract_inverted_index.customers | 7 |
| abstract_inverted_index.selection | 46 |
| abstract_inverted_index.Therefore, | 21 |
| abstract_inverted_index.customer's | 45 |
| abstract_inverted_index.evaluation | 58 |
| abstract_inverted_index.likelihood | 40 |
| abstract_inverted_index.attributes, | 35 |
| abstract_inverted_index.considering | 22 |
| abstract_inverted_index.convenience | 16 |
| abstract_inverted_index.probability | 47 |
| abstract_inverted_index.?separation?. | 51 |
| abstract_inverted_index.?continuation? | 49 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.07189791 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |