Contact Tracing Information Improves the Performance of Group Testing\n Algorithms Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2106.02699
Group testing can help maintain a widespread testing program using fewer\nresources amid a pandemic. In group testing, we are given $n$ samples, one per\nindividual. These samples are arranged into $m < n$ pooled samples, where each\npool is obtained by mixing a subset of the $n$ individual samples. Infected\nindividuals are then identified using a group testing algorithm. In this paper,\nwe use side information (SI) collected from contact tracing (CT) within\nnonadaptive/single-stage group testing algorithms. We generate CT SI data by\nincorporating characteristics of disease spread between individuals. These data\nare fed into two signal and measurement models for group testing, and numerical\nresults show that our algorithms provide improved sensitivity and specificity.\nWe also show how to incorporate CT SI into the design of the pooling matrix.\nThat said, our numerical results suggest that the utilization of SI in the\npooling matrix design based on the minimization of a weighted coherence measure\ndoes not yield significant performance gains beyond the incorporation of SI in\nthe group testing algorithm.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2106.02699
- https://arxiv.org/pdf/2106.02699
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287125393
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287125393Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2106.02699Digital Object Identifier
- Title
-
Contact Tracing Information Improves the Performance of Group Testing\n AlgorithmsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-04Full publication date if available
- Authors
-
Ritesh Goenka, Shu-Jie Cao, Chau-Wai Wong, Ajit Rajwade, Dror BaronList of authors in order
- Landing page
-
https://arxiv.org/abs/2106.02699Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2106.02699Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.02699Direct OA link when available
- Concepts
-
Group testing, Pooling, Group tests, Tracing, Algorithm, Computer science, Group (periodic table), Matrix (chemical analysis), Sequential analysis, Mathematics, Statistics, Artificial intelligence, Statistical hypothesis testing, Combinatorics, Materials science, Composite material, Organic chemistry, Operating system, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287125393 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2106.02699 |
| ids.openalex | https://openalex.org/W4287125393 |
| fwci | 0.2194311 |
| type | preprint |
| title | Contact Tracing Information Improves the Performance of Group Testing\n Algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11754 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 detection and testing |
| topics[1].id | https://openalex.org/T11243 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9890000224113464 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Respiratory viral infections research |
| topics[2].id | https://openalex.org/T11819 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9811000227928162 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Data-Driven Disease Surveillance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177580056 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9058599472045898 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5611272 |
| concepts[0].display_name | Group testing |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8551414012908936 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C88484641 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5906226634979248 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5611273 |
| concepts[2].display_name | Group tests |
| concepts[3].id | https://openalex.org/C138673069 |
| concepts[3].level | 2 |
| concepts[3].score | 0.55744469165802 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q322229 |
| concepts[3].display_name | Tracing |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5546172261238098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4737718403339386 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2781311116 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45748841762542725 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[6].display_name | Group (periodic table) |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4563584327697754 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C80478641 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4141947627067566 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q195771 |
| concepts[8].display_name | Sequential analysis |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.27327150106430054 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2604868412017822 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17339849472045898 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C87007009 |
| concepts[12].level | 2 |
| concepts[12].score | 0.17174246907234192 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[12].display_name | Statistical hypothesis testing |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11183694005012512 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1035110354423523 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/group-testing |
| keywords[0].score | 0.9058599472045898 |
| keywords[0].display_name | Group testing |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.8551414012908936 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/group-tests |
| keywords[2].score | 0.5906226634979248 |
| keywords[2].display_name | Group tests |
| keywords[3].id | https://openalex.org/keywords/tracing |
| keywords[3].score | 0.55744469165802 |
| keywords[3].display_name | Tracing |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5546172261238098 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4737718403339386 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/group |
| keywords[6].score | 0.45748841762542725 |
| keywords[6].display_name | Group (periodic table) |
| keywords[7].id | https://openalex.org/keywords/matrix |
| keywords[7].score | 0.4563584327697754 |
| keywords[7].display_name | Matrix (chemical analysis) |
| keywords[8].id | https://openalex.org/keywords/sequential-analysis |
| keywords[8].score | 0.4141947627067566 |
| keywords[8].display_name | Sequential analysis |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.27327150106430054 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.2604868412017822 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.17339849472045898 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[12].score | 0.17174246907234192 |
| keywords[12].display_name | Statistical hypothesis testing |
| keywords[13].id | https://openalex.org/keywords/combinatorics |
| keywords[13].score | 0.11183694005012512 |
| keywords[13].display_name | Combinatorics |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.1035110354423523 |
| keywords[14].display_name | Materials science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2106.02699 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2106.02699 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2106.02699 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5011783651 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ritesh Goenka |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Goenka, Ritesh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102872877 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-0132-2586 |
| authorships[1].author.display_name | Shu-Jie Cao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cao, Shu-Jie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014799225 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3873-7708 |
| authorships[2].author.display_name | Chau-Wai Wong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wong, Chau-Wai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5072824358 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6463-3315 |
| authorships[3].author.display_name | Ajit Rajwade |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rajwade, Ajit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037316256 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6371-8496 |
| authorships[4].author.display_name | Dror Baron |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Baron, Dror |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.02699 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Contact Tracing Information Improves the Performance of Group Testing\n Algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11754 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 detection and testing |
| related_works | https://openalex.org/W4225762034, https://openalex.org/W3208673741, https://openalex.org/W3193495136, https://openalex.org/W2953273246, https://openalex.org/W3214194574, https://openalex.org/W3090123594, https://openalex.org/W4298106763, https://openalex.org/W2935446612, https://openalex.org/W2588572544, https://openalex.org/W2792648525 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.02699 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.02699 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.02699 |
| primary_location.id | pmh:oai:arXiv.org:2106.02699 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2106.02699 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2106.02699 |
| publication_date | 2021-06-04 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 12, 40, 52, 140 |
| abstract_inverted_index.$m | 29 |
| abstract_inverted_index.CT | 74, 112 |
| abstract_inverted_index.In | 14, 56 |
| abstract_inverted_index.SI | 75, 113, 130, 153 |
| abstract_inverted_index.We | 72 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 131 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.n$ | 31 |
| abstract_inverted_index.of | 42, 79, 117, 129, 139, 152 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.to | 110 |
| abstract_inverted_index.we | 17 |
| abstract_inverted_index.$n$ | 20, 44 |
| abstract_inverted_index.and | 90, 96, 105 |
| abstract_inverted_index.are | 18, 26, 48 |
| abstract_inverted_index.can | 2 |
| abstract_inverted_index.fed | 86 |
| abstract_inverted_index.for | 93 |
| abstract_inverted_index.how | 109 |
| abstract_inverted_index.not | 144 |
| abstract_inverted_index.one | 22 |
| abstract_inverted_index.our | 100, 122 |
| abstract_inverted_index.the | 43, 115, 118, 127, 137, 150 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.use | 59 |
| abstract_inverted_index.< | 30 |
| abstract_inverted_index.(CT) | 67 |
| abstract_inverted_index.(SI) | 62 |
| abstract_inverted_index.also | 107 |
| abstract_inverted_index.amid | 11 |
| abstract_inverted_index.data | 76 |
| abstract_inverted_index.from | 64 |
| abstract_inverted_index.help | 3 |
| abstract_inverted_index.into | 28, 87, 114 |
| abstract_inverted_index.show | 98, 108 |
| abstract_inverted_index.side | 60 |
| abstract_inverted_index.that | 99, 126 |
| abstract_inverted_index.then | 49 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.Group | 0 |
| abstract_inverted_index.These | 24, 84 |
| abstract_inverted_index.based | 135 |
| abstract_inverted_index.gains | 148 |
| abstract_inverted_index.given | 19 |
| abstract_inverted_index.group | 15, 53, 69, 94, 155 |
| abstract_inverted_index.said, | 121 |
| abstract_inverted_index.using | 9, 51 |
| abstract_inverted_index.where | 34 |
| abstract_inverted_index.yield | 145 |
| abstract_inverted_index.beyond | 149 |
| abstract_inverted_index.design | 116, 134 |
| abstract_inverted_index.matrix | 133 |
| abstract_inverted_index.mixing | 39 |
| abstract_inverted_index.models | 92 |
| abstract_inverted_index.pooled | 32 |
| abstract_inverted_index.signal | 89 |
| abstract_inverted_index.spread | 81 |
| abstract_inverted_index.subset | 41 |
| abstract_inverted_index.between | 82 |
| abstract_inverted_index.contact | 65 |
| abstract_inverted_index.disease | 80 |
| abstract_inverted_index.in\nthe | 154 |
| abstract_inverted_index.pooling | 119 |
| abstract_inverted_index.program | 8 |
| abstract_inverted_index.provide | 102 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.samples | 25 |
| abstract_inverted_index.suggest | 125 |
| abstract_inverted_index.testing | 1, 7, 54, 70, 156 |
| abstract_inverted_index.tracing | 66 |
| abstract_inverted_index.arranged | 27 |
| abstract_inverted_index.generate | 73 |
| abstract_inverted_index.improved | 103 |
| abstract_inverted_index.maintain | 4 |
| abstract_inverted_index.obtained | 37 |
| abstract_inverted_index.samples, | 21, 33 |
| abstract_inverted_index.samples. | 46 |
| abstract_inverted_index.testing, | 16, 95 |
| abstract_inverted_index.weighted | 141 |
| abstract_inverted_index.coherence | 142 |
| abstract_inverted_index.collected | 63 |
| abstract_inverted_index.data\nare | 85 |
| abstract_inverted_index.numerical | 123 |
| abstract_inverted_index.pandemic. | 13 |
| abstract_inverted_index.algorithm. | 55 |
| abstract_inverted_index.algorithms | 101 |
| abstract_inverted_index.each\npool | 35 |
| abstract_inverted_index.identified | 50 |
| abstract_inverted_index.individual | 45 |
| abstract_inverted_index.paper,\nwe | 58 |
| abstract_inverted_index.widespread | 6 |
| abstract_inverted_index.algorithms. | 71 |
| abstract_inverted_index.incorporate | 111 |
| abstract_inverted_index.information | 61 |
| abstract_inverted_index.measurement | 91 |
| abstract_inverted_index.performance | 147 |
| abstract_inverted_index.sensitivity | 104 |
| abstract_inverted_index.significant | 146 |
| abstract_inverted_index.utilization | 128 |
| abstract_inverted_index.algorithm.\n | 157 |
| abstract_inverted_index.individuals. | 83 |
| abstract_inverted_index.minimization | 138 |
| abstract_inverted_index.the\npooling | 132 |
| abstract_inverted_index.incorporation | 151 |
| abstract_inverted_index.matrix.\nThat | 120 |
| abstract_inverted_index.measure\ndoes | 143 |
| abstract_inverted_index.characteristics | 78 |
| abstract_inverted_index.fewer\nresources | 10 |
| abstract_inverted_index.per\nindividual. | 23 |
| abstract_inverted_index.specificity.\nWe | 106 |
| abstract_inverted_index.by\nincorporating | 77 |
| abstract_inverted_index.numerical\nresults | 97 |
| abstract_inverted_index.Infected\nindividuals | 47 |
| abstract_inverted_index.within\nnonadaptive/single-stage | 68 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.55906025 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |