Contactless apnea event detection using visible-thermal imaging Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s11760-025-03959-2
Apnea detection is a significant health concern due to its potential consequences, ranging from increased blood pressure to heart failure. Polysomnography is currently the gold standard for identifying apnea patterns during sleep. However, it requires trained personnel for analysis and is not suitable for long-term monitoring due to discomfort. To address these limitations, this paper proposes a contactless approach for apnea detection. The proposed approach utilizes visible and thermal imaging to remotely measure the breathing signal. This signal is then fed into deep learning models, including a 1-dimensional convolutional neural network (CNN), a long short-term memory (LSTM) network, and a hybrid model combining both. The effectiveness of these models is evaluated through comparative analysis. To evaluate the performance of the models, the authors define an apnea index to assess the presence of apnea in per second overlapped epochs. The validation of the contactless approach is evaluated by comparing the apnea detection results with those obtained from a contact-based breathing signal. The results demonstrate promising performance for each model. The mean absolute error values are reported as 0.6195 for CNN, 1.0177 for LSTM, and 1.3540 for CNN–LSTM. The Bland–Altman and correlation plot analyses demonstrate a high level of agreement between the contactless approach and the traditional contact-based method. Consequently, this approach might be useful for applications such as home-based patient monitoring, sleep studies, and neonatal apnea detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11760-025-03959-2
- https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408297738
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408297738Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11760-025-03959-2Digital Object Identifier
- Title
-
Contactless apnea event detection using visible-thermal imagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-10Full publication date if available
- Authors
-
Lalit Maurya, Reyer Zwiggelaar, Deepak Chawla, Prasant Kumar MahapatraList of authors in order
- Landing page
-
https://doi.org/10.1007/s11760-025-03959-2Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdfDirect OA link when available
- Concepts
-
Event (particle physics), Apnea, Computer vision, Medicine, Computer science, Internal medicine, Physics, AstrophysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408297738 |
|---|---|
| doi | https://doi.org/10.1007/s11760-025-03959-2 |
| ids.doi | https://doi.org/10.1007/s11760-025-03959-2 |
| ids.openalex | https://openalex.org/W4408297738 |
| fwci | 1.99286181 |
| type | article |
| title | Contactless apnea event detection using visible-thermal imaging |
| biblio.issue | 5 |
| biblio.volume | 19 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991100013256073 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9753999710083008 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320320351 |
| funders[0].ror | https://ror.org/051x4wh35 |
| funders[0].display_name | Commonwealth Scholarship Commission |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C2779662365 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6152294278144836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[0].display_name | Event (particle physics) |
| concepts[1].id | https://openalex.org/C2781326671 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47876420617103577 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q754424 |
| concepts[1].display_name | Apnea |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.37387943267822266 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.36132118105888367 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.28427594900131226 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2602124512195587 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.21104249358177185 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C44870925 |
| concepts[7].level | 1 |
| concepts[7].score | 0.06794935464859009 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[7].display_name | Astrophysics |
| keywords[0].id | https://openalex.org/keywords/event |
| keywords[0].score | 0.6152294278144836 |
| keywords[0].display_name | Event (particle physics) |
| keywords[1].id | https://openalex.org/keywords/apnea |
| keywords[1].score | 0.47876420617103577 |
| keywords[1].display_name | Apnea |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.37387943267822266 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.36132118105888367 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.28427594900131226 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.2602124512195587 |
| keywords[5].display_name | Internal medicine |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.21104249358177185 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/astrophysics |
| keywords[7].score | 0.06794935464859009 |
| keywords[7].display_name | Astrophysics |
| language | en |
| locations[0].id | doi:10.1007/s11760-025-03959-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S156904493 |
| locations[0].source.issn | 1863-1703, 1863-1711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1863-1703 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Signal Image and Video Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Signal, Image and Video Processing |
| locations[0].landing_page_url | https://doi.org/10.1007/s11760-025-03959-2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5050693808 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2234-8692 |
| authorships[0].author.display_name | Lalit Maurya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lalit Maurya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075394907 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4360-0896 |
| authorships[1].author.display_name | Reyer Zwiggelaar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Reyer Zwiggelaar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5040887308 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8458-037X |
| authorships[2].author.display_name | Deepak Chawla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Deepak Chawla |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044394092 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7869-3199 |
| authorships[3].author.display_name | Prasant Kumar Mahapatra |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Prasant Mahapatra |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Contactless apnea event detection using visible-thermal imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11760-025-03959-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S156904493 |
| best_oa_location.source.issn | 1863-1703, 1863-1711 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1863-1703 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Signal Image and Video Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Signal, Image and Video Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11760-025-03959-2 |
| primary_location.id | doi:10.1007/s11760-025-03959-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S156904493 |
| primary_location.source.issn | 1863-1703, 1863-1711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1863-1703 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Signal Image and Video Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11760-025-03959-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Signal, Image and Video Processing |
| primary_location.landing_page_url | https://doi.org/10.1007/s11760-025-03959-2 |
| publication_date | 2025-03-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6743597387, https://openalex.org/W2131111256, https://openalex.org/W2169854632, https://openalex.org/W2789916407, https://openalex.org/W2795937596, https://openalex.org/W581125051, https://openalex.org/W3210525201, https://openalex.org/W2967286059, https://openalex.org/W2959903984, https://openalex.org/W2037821910, https://openalex.org/W2806121741, https://openalex.org/W2747993267, https://openalex.org/W2139562446, https://openalex.org/W2972799962, https://openalex.org/W4213198161, https://openalex.org/W3161585833, https://openalex.org/W3013464546, https://openalex.org/W4281674516, https://openalex.org/W4387110731, https://openalex.org/W2973877684, https://openalex.org/W4404370999, https://openalex.org/W2111143184, https://openalex.org/W2173931240, https://openalex.org/W3209113329, https://openalex.org/W3024519232, https://openalex.org/W2090073003, https://openalex.org/W2800429067, https://openalex.org/W2980235992, https://openalex.org/W4384080284, https://openalex.org/W4397012545, https://openalex.org/W3183983549, https://openalex.org/W3009182390, https://openalex.org/W2170282673, https://openalex.org/W2341528187, https://openalex.org/W1997121481, https://openalex.org/W2886596460, https://openalex.org/W3101998545, https://openalex.org/W3015535616 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 4, 57, 87, 93, 100, 157, 194 |
| abstract_inverted_index.To | 50, 115 |
| abstract_inverted_index.an | 125 |
| abstract_inverted_index.as | 176, 217 |
| abstract_inverted_index.be | 212 |
| abstract_inverted_index.by | 147 |
| abstract_inverted_index.in | 134 |
| abstract_inverted_index.is | 3, 22, 41, 79, 110, 145 |
| abstract_inverted_index.it | 34 |
| abstract_inverted_index.of | 107, 119, 132, 141, 197 |
| abstract_inverted_index.to | 9, 18, 48, 71, 128 |
| abstract_inverted_index.The | 63, 105, 139, 161, 169, 187 |
| abstract_inverted_index.and | 40, 68, 99, 183, 189, 203, 223 |
| abstract_inverted_index.are | 174 |
| abstract_inverted_index.due | 8, 47 |
| abstract_inverted_index.fed | 81 |
| abstract_inverted_index.for | 27, 38, 44, 60, 166, 178, 181, 185, 214 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.not | 42 |
| abstract_inverted_index.per | 135 |
| abstract_inverted_index.the | 24, 74, 117, 120, 122, 130, 142, 149, 200, 204 |
| abstract_inverted_index.CNN, | 179 |
| abstract_inverted_index.This | 77 |
| abstract_inverted_index.deep | 83 |
| abstract_inverted_index.each | 167 |
| abstract_inverted_index.from | 14, 156 |
| abstract_inverted_index.gold | 25 |
| abstract_inverted_index.high | 195 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.long | 94 |
| abstract_inverted_index.mean | 170 |
| abstract_inverted_index.plot | 191 |
| abstract_inverted_index.such | 216 |
| abstract_inverted_index.then | 80 |
| abstract_inverted_index.this | 54, 209 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.Apnea | 1 |
| abstract_inverted_index.LSTM, | 182 |
| abstract_inverted_index.apnea | 29, 61, 126, 133, 150, 225 |
| abstract_inverted_index.blood | 16 |
| abstract_inverted_index.both. | 104 |
| abstract_inverted_index.error | 172 |
| abstract_inverted_index.heart | 19 |
| abstract_inverted_index.index | 127 |
| abstract_inverted_index.level | 196 |
| abstract_inverted_index.might | 211 |
| abstract_inverted_index.model | 102 |
| abstract_inverted_index.paper | 55 |
| abstract_inverted_index.sleep | 221 |
| abstract_inverted_index.these | 52, 108 |
| abstract_inverted_index.those | 154 |
| abstract_inverted_index.(CNN), | 92 |
| abstract_inverted_index.(LSTM) | 97 |
| abstract_inverted_index.0.6195 | 177 |
| abstract_inverted_index.1.0177 | 180 |
| abstract_inverted_index.1.3540 | 184 |
| abstract_inverted_index.assess | 129 |
| abstract_inverted_index.define | 124 |
| abstract_inverted_index.during | 31 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.hybrid | 101 |
| abstract_inverted_index.memory | 96 |
| abstract_inverted_index.model. | 168 |
| abstract_inverted_index.models | 109 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.second | 136 |
| abstract_inverted_index.signal | 78 |
| abstract_inverted_index.sleep. | 32 |
| abstract_inverted_index.useful | 213 |
| abstract_inverted_index.values | 173 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.authors | 123 |
| abstract_inverted_index.between | 199 |
| abstract_inverted_index.concern | 7 |
| abstract_inverted_index.epochs. | 138 |
| abstract_inverted_index.imaging | 70 |
| abstract_inverted_index.measure | 73 |
| abstract_inverted_index.method. | 207 |
| abstract_inverted_index.models, | 85, 121 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.patient | 219 |
| abstract_inverted_index.ranging | 13 |
| abstract_inverted_index.results | 152, 162 |
| abstract_inverted_index.signal. | 76, 160 |
| abstract_inverted_index.thermal | 69 |
| abstract_inverted_index.through | 112 |
| abstract_inverted_index.trained | 36 |
| abstract_inverted_index.visible | 67 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.absolute | 171 |
| abstract_inverted_index.analyses | 192 |
| abstract_inverted_index.analysis | 39 |
| abstract_inverted_index.approach | 59, 65, 144, 202, 210 |
| abstract_inverted_index.evaluate | 116 |
| abstract_inverted_index.failure. | 20 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.neonatal | 224 |
| abstract_inverted_index.network, | 98 |
| abstract_inverted_index.obtained | 155 |
| abstract_inverted_index.patterns | 30 |
| abstract_inverted_index.presence | 131 |
| abstract_inverted_index.pressure | 17 |
| abstract_inverted_index.proposed | 64 |
| abstract_inverted_index.proposes | 56 |
| abstract_inverted_index.remotely | 72 |
| abstract_inverted_index.reported | 175 |
| abstract_inverted_index.requires | 35 |
| abstract_inverted_index.standard | 26 |
| abstract_inverted_index.studies, | 222 |
| abstract_inverted_index.suitable | 43 |
| abstract_inverted_index.utilizes | 66 |
| abstract_inverted_index.agreement | 198 |
| abstract_inverted_index.analysis. | 114 |
| abstract_inverted_index.breathing | 75, 159 |
| abstract_inverted_index.combining | 103 |
| abstract_inverted_index.comparing | 148 |
| abstract_inverted_index.currently | 23 |
| abstract_inverted_index.detection | 2, 151 |
| abstract_inverted_index.evaluated | 111, 146 |
| abstract_inverted_index.including | 86 |
| abstract_inverted_index.increased | 15 |
| abstract_inverted_index.long-term | 45 |
| abstract_inverted_index.personnel | 37 |
| abstract_inverted_index.potential | 11 |
| abstract_inverted_index.promising | 164 |
| abstract_inverted_index.detection. | 62, 226 |
| abstract_inverted_index.home-based | 218 |
| abstract_inverted_index.monitoring | 46 |
| abstract_inverted_index.overlapped | 137 |
| abstract_inverted_index.short-term | 95 |
| abstract_inverted_index.validation | 140 |
| abstract_inverted_index.CNN–LSTM. | 186 |
| abstract_inverted_index.comparative | 113 |
| abstract_inverted_index.contactless | 58, 143, 201 |
| abstract_inverted_index.correlation | 190 |
| abstract_inverted_index.demonstrate | 163, 193 |
| abstract_inverted_index.discomfort. | 49 |
| abstract_inverted_index.identifying | 28 |
| abstract_inverted_index.monitoring, | 220 |
| abstract_inverted_index.performance | 118, 165 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.traditional | 205 |
| abstract_inverted_index.applications | 215 |
| abstract_inverted_index.limitations, | 53 |
| abstract_inverted_index.1-dimensional | 88 |
| abstract_inverted_index.Consequently, | 208 |
| abstract_inverted_index.consequences, | 12 |
| abstract_inverted_index.contact-based | 158, 206 |
| abstract_inverted_index.convolutional | 89 |
| abstract_inverted_index.effectiveness | 106 |
| abstract_inverted_index.Bland–Altman | 188 |
| abstract_inverted_index.Polysomnography | 21 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.73422438 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |