Content-based Retrieval of 3D CAD Subassemblies Using 3D Radon Transform Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2197/ipsjjip.31.734
We propose a content-based method for retrieving the 3D CAD assemblies which contain or are contained in the assembly given as a query from a database. The retrieval is based on ranking assemblies in the database according to their content rates which are different criteria from the similarities of shapes. The content rate is computed by comparing the projections of components constituting an assembly in the database with those of components constituting the query. We use the 3D Radon transform to obtain the projections. In existing methods for retrieving CAD models, projections of each model onto 2D planes, which are a set of two-dimensional data, are often used to compute the similarity between them. The proposed method simplifies the process of comparing the projections of components because the projections using the 3D Radon transform are a set of one-dimensional data. The method has the unique feature of identifying the component layouts, which reflect the technical know-how and information of the product designers. The components which have the same shapes but different properties such as material names are also distinguished based on their layouts without depending on the labels assigned to the properties. Other than our previous method, no existing methods possess such features. We show that the proposed method has better performance in the retrieval precision and processing time than the previous method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2197/ipsjjip.31.734
- OA Status
- diamond
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388676839
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388676839Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2197/ipsjjip.31.734Digital Object Identifier
- Title
-
Content-based Retrieval of 3D CAD Subassemblies Using 3D Radon TransformWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Kaoru Katayama, Youta Yamaji, Shotaro Toyoizumi, Takashi HirashimaList of authors in order
- Landing page
-
https://doi.org/10.2197/ipsjjip.31.734Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2197/ipsjjip.31.734Direct OA link when available
- Concepts
-
Computer science, Ranking (information retrieval), Process (computing), Set (abstract data type), CAD, Feature (linguistics), Component (thermodynamics), Information retrieval, Similarity (geometry), Data mining, Product (mathematics), Result set, Database, Pattern recognition (psychology), Artificial intelligence, Image (mathematics), Engineering drawing, Mathematics, Engineering, Physics, Thermodynamics, Geometry, Programming language, Operating system, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388676839 |
|---|---|
| doi | https://doi.org/10.2197/ipsjjip.31.734 |
| ids.doi | https://doi.org/10.2197/ipsjjip.31.734 |
| ids.openalex | https://openalex.org/W4388676839 |
| fwci | 0.0 |
| type | article |
| title | Content-based Retrieval of 3D CAD Subassemblies Using 3D Radon Transform |
| biblio.issue | 0 |
| biblio.volume | 31 |
| biblio.last_page | 742 |
| biblio.first_page | 734 |
| topics[0].id | https://openalex.org/T14339 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Processing and 3D Reconstruction |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8447033166885376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C189430467 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6281352043151855 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[1].display_name | Ranking (information retrieval) |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5711727142333984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5587645769119263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C194789388 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5506085157394409 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17855283 |
| concepts[4].display_name | CAD |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5404745936393738 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C168167062 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47882941365242004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[6].display_name | Component (thermodynamics) |
| concepts[7].id | https://openalex.org/C23123220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4788082242012024 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[7].display_name | Information retrieval |
| concepts[8].id | https://openalex.org/C103278499 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4602922201156616 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[8].display_name | Similarity (geometry) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4384329617023468 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C90673727 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42236945033073425 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[10].display_name | Product (mathematics) |
| concepts[11].id | https://openalex.org/C4969071 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4221663475036621 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7316353 |
| concepts[11].display_name | Result set |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.41807103157043457 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.37554654479026794 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34883230924606323 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.24737489223480225 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C199639397 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2438497245311737 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[16].display_name | Engineering drawing |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0932285487651825 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C97355855 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[20].display_name | Thermodynamics |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| concepts[22].id | https://openalex.org/C199360897 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[22].display_name | Programming language |
| concepts[23].id | https://openalex.org/C111919701 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[23].display_name | Operating system |
| concepts[24].id | https://openalex.org/C41895202 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[24].display_name | Linguistics |
| concepts[25].id | https://openalex.org/C138885662 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[25].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8447033166885376 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/ranking |
| keywords[1].score | 0.6281352043151855 |
| keywords[1].display_name | Ranking (information retrieval) |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5711727142333984 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.5587645769119263 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/cad |
| keywords[4].score | 0.5506085157394409 |
| keywords[4].display_name | CAD |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5404745936393738 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/component |
| keywords[6].score | 0.47882941365242004 |
| keywords[6].display_name | Component (thermodynamics) |
| keywords[7].id | https://openalex.org/keywords/information-retrieval |
| keywords[7].score | 0.4788082242012024 |
| keywords[7].display_name | Information retrieval |
| keywords[8].id | https://openalex.org/keywords/similarity |
| keywords[8].score | 0.4602922201156616 |
| keywords[8].display_name | Similarity (geometry) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.4384329617023468 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/product |
| keywords[10].score | 0.42236945033073425 |
| keywords[10].display_name | Product (mathematics) |
| keywords[11].id | https://openalex.org/keywords/result-set |
| keywords[11].score | 0.4221663475036621 |
| keywords[11].display_name | Result set |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.41807103157043457 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.37554654479026794 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.34883230924606323 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.24737489223480225 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/engineering-drawing |
| keywords[16].score | 0.2438497245311737 |
| keywords[16].display_name | Engineering drawing |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.0932285487651825 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2197/ipsjjip.31.734 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239267 |
| locations[0].source.issn | 1882-6652 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1882-6652 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Information Processing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Information Processing |
| locations[0].landing_page_url | https://doi.org/10.2197/ipsjjip.31.734 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055703166 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kaoru Katayama |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I69740276 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Tokyo Metropolitan University |
| authorships[0].institutions[0].id | https://openalex.org/I69740276 |
| authorships[0].institutions[0].ror | https://ror.org/00ws30h19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I69740276 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tokyo Metropolitan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaoru Katayama |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Tokyo Metropolitan University |
| authorships[1].author.id | https://openalex.org/A5113046903 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Youta Yamaji |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69740276 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Tokyo Metropolitan University |
| authorships[1].institutions[0].id | https://openalex.org/I69740276 |
| authorships[1].institutions[0].ror | https://ror.org/00ws30h19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69740276 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Tokyo Metropolitan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Youta Yamaji |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Tokyo Metropolitan University |
| authorships[2].author.id | https://openalex.org/A5114099754 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shotaro Toyoizumi |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I69740276 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Tokyo Metropolitan University |
| authorships[2].institutions[0].id | https://openalex.org/I69740276 |
| authorships[2].institutions[0].ror | https://ror.org/00ws30h19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I69740276 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Tokyo Metropolitan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shotaro Toyoizumi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Tokyo Metropolitan University |
| authorships[3].author.id | https://openalex.org/A5059038419 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9144-6045 |
| authorships[3].author.display_name | Takashi Hirashima |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I69740276 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Tokyo Metropolitan University |
| authorships[3].institutions[0].id | https://openalex.org/I69740276 |
| authorships[3].institutions[0].ror | https://ror.org/00ws30h19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I69740276 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Tokyo Metropolitan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Takashi Hirashima |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Tokyo Metropolitan University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2197/ipsjjip.31.734 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Content-based Retrieval of 3D CAD Subassemblies Using 3D Radon Transform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14339 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Processing and 3D Reconstruction |
| related_works | https://openalex.org/W637098845, https://openalex.org/W2410116073, https://openalex.org/W3044972437, https://openalex.org/W2275866607, https://openalex.org/W1908932129, https://openalex.org/W2587289131, https://openalex.org/W2365000768, https://openalex.org/W3144042555, https://openalex.org/W4287707480, https://openalex.org/W4308654829 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2197/ipsjjip.31.734 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239267 |
| best_oa_location.source.issn | 1882-6652 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1882-6652 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Information Processing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Information Processing |
| best_oa_location.landing_page_url | https://doi.org/10.2197/ipsjjip.31.734 |
| primary_location.id | doi:10.2197/ipsjjip.31.734 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239267 |
| primary_location.source.issn | 1882-6652 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1882-6652 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Information Processing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Information Processing |
| primary_location.landing_page_url | https://doi.org/10.2197/ipsjjip.31.734 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2932654008, https://openalex.org/W1997041243, https://openalex.org/W2613240410, https://openalex.org/W3023680715, https://openalex.org/W2937412180, https://openalex.org/W2103533657, https://openalex.org/W2295332248, https://openalex.org/W2969525195, https://openalex.org/W2923959920, https://openalex.org/W2777973557, https://openalex.org/W2107105977, https://openalex.org/W1984892632, https://openalex.org/W2076836895, https://openalex.org/W2770568828, https://openalex.org/W2706316778, https://openalex.org/W1551774182, https://openalex.org/W2119605622, https://openalex.org/W2260723623, https://openalex.org/W1966385142 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 2, 21, 24, 100, 135 |
| abstract_inverted_index.2D | 96 |
| abstract_inverted_index.3D | 8, 77, 131 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.We | 0, 74, 203 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.as | 20, 173 |
| abstract_inverted_index.by | 55 |
| abstract_inverted_index.in | 16, 33, 64, 212 |
| abstract_inverted_index.is | 28, 53 |
| abstract_inverted_index.no | 197 |
| abstract_inverted_index.of | 48, 59, 69, 92, 102, 120, 124, 137, 146, 158 |
| abstract_inverted_index.on | 30, 180, 185 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.to | 37, 80, 108, 189 |
| abstract_inverted_index.CAD | 9, 89 |
| abstract_inverted_index.The | 26, 50, 114, 140, 162 |
| abstract_inverted_index.and | 156, 216 |
| abstract_inverted_index.are | 14, 42, 99, 105, 134, 176 |
| abstract_inverted_index.but | 169 |
| abstract_inverted_index.for | 5, 87 |
| abstract_inverted_index.has | 142, 209 |
| abstract_inverted_index.our | 194 |
| abstract_inverted_index.set | 101, 136 |
| abstract_inverted_index.the | 7, 17, 34, 46, 57, 65, 72, 76, 82, 110, 118, 122, 127, 130, 143, 148, 153, 159, 166, 186, 190, 206, 213, 220 |
| abstract_inverted_index.use | 75 |
| abstract_inverted_index.also | 177 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.from | 23, 45 |
| abstract_inverted_index.have | 165 |
| abstract_inverted_index.onto | 95 |
| abstract_inverted_index.rate | 52 |
| abstract_inverted_index.same | 167 |
| abstract_inverted_index.show | 204 |
| abstract_inverted_index.such | 172, 201 |
| abstract_inverted_index.than | 193, 219 |
| abstract_inverted_index.that | 205 |
| abstract_inverted_index.time | 218 |
| abstract_inverted_index.used | 107 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.Other | 192 |
| abstract_inverted_index.Radon | 78, 132 |
| abstract_inverted_index.based | 29, 179 |
| abstract_inverted_index.data, | 104 |
| abstract_inverted_index.data. | 139 |
| abstract_inverted_index.given | 19 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.names | 175 |
| abstract_inverted_index.often | 106 |
| abstract_inverted_index.query | 22 |
| abstract_inverted_index.rates | 40 |
| abstract_inverted_index.their | 38, 181 |
| abstract_inverted_index.them. | 113 |
| abstract_inverted_index.those | 68 |
| abstract_inverted_index.using | 129 |
| abstract_inverted_index.which | 11, 41, 98, 151, 164 |
| abstract_inverted_index.better | 210 |
| abstract_inverted_index.labels | 187 |
| abstract_inverted_index.method | 4, 116, 141, 208 |
| abstract_inverted_index.obtain | 81 |
| abstract_inverted_index.query. | 73 |
| abstract_inverted_index.shapes | 168 |
| abstract_inverted_index.unique | 144 |
| abstract_inverted_index.because | 126 |
| abstract_inverted_index.between | 112 |
| abstract_inverted_index.compute | 109 |
| abstract_inverted_index.contain | 12 |
| abstract_inverted_index.content | 39, 51 |
| abstract_inverted_index.feature | 145 |
| abstract_inverted_index.layouts | 182 |
| abstract_inverted_index.method, | 196 |
| abstract_inverted_index.method. | 222 |
| abstract_inverted_index.methods | 86, 199 |
| abstract_inverted_index.models, | 90 |
| abstract_inverted_index.planes, | 97 |
| abstract_inverted_index.possess | 200 |
| abstract_inverted_index.process | 119 |
| abstract_inverted_index.product | 160 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.ranking | 31 |
| abstract_inverted_index.reflect | 152 |
| abstract_inverted_index.shapes. | 49 |
| abstract_inverted_index.without | 183 |
| abstract_inverted_index.assembly | 18, 63 |
| abstract_inverted_index.assigned | 188 |
| abstract_inverted_index.computed | 54 |
| abstract_inverted_index.criteria | 44 |
| abstract_inverted_index.database | 35, 66 |
| abstract_inverted_index.existing | 85, 198 |
| abstract_inverted_index.know-how | 155 |
| abstract_inverted_index.layouts, | 150 |
| abstract_inverted_index.material | 174 |
| abstract_inverted_index.previous | 195, 221 |
| abstract_inverted_index.proposed | 115, 207 |
| abstract_inverted_index.according | 36 |
| abstract_inverted_index.comparing | 56, 121 |
| abstract_inverted_index.component | 149 |
| abstract_inverted_index.contained | 15 |
| abstract_inverted_index.database. | 25 |
| abstract_inverted_index.depending | 184 |
| abstract_inverted_index.different | 43, 170 |
| abstract_inverted_index.features. | 202 |
| abstract_inverted_index.precision | 215 |
| abstract_inverted_index.retrieval | 27, 214 |
| abstract_inverted_index.technical | 154 |
| abstract_inverted_index.transform | 79, 133 |
| abstract_inverted_index.assemblies | 10, 32 |
| abstract_inverted_index.components | 60, 70, 125, 163 |
| abstract_inverted_index.designers. | 161 |
| abstract_inverted_index.processing | 217 |
| abstract_inverted_index.properties | 171 |
| abstract_inverted_index.retrieving | 6, 88 |
| abstract_inverted_index.similarity | 111 |
| abstract_inverted_index.simplifies | 117 |
| abstract_inverted_index.identifying | 147 |
| abstract_inverted_index.information | 157 |
| abstract_inverted_index.performance | 211 |
| abstract_inverted_index.projections | 58, 91, 123, 128 |
| abstract_inverted_index.properties. | 191 |
| abstract_inverted_index.constituting | 61, 71 |
| abstract_inverted_index.projections. | 83 |
| abstract_inverted_index.similarities | 47 |
| abstract_inverted_index.content-based | 3 |
| abstract_inverted_index.distinguished | 178 |
| abstract_inverted_index.one-dimensional | 138 |
| abstract_inverted_index.two-dimensional | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.17494327 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |