Content Recommendation on Small Scale Sparse Social Network Article Swipe
Small scale social network platforms suffer from increased sparsity, both in the size of text posted by users and the number of posts, as well as the specific nature of kurtosis that affects all platforms, yet more so on an emerging platform. In this work we examine a dataset from such a platform, where the majority of the activity is in the form of user generated text; both posted content and comments left on those posts. We inquire into what techniques would present suitable recommendations for a platform with a similar characteristic dataset. We evaluate leading textual analysis techniques and show how topic-model based techniques present a viable means for recommendation on such a platform as compared to other simpler, or more advanced techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32920/ryerson.14655450.v1
- https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdf
- OA Status
- gold
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3186937652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3186937652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32920/ryerson.14655450.v1Digital Object Identifier
- Title
-
Content Recommendation on Small Scale Sparse Social NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-23Full publication date if available
- Authors
-
Bilal KhanList of authors in order
- Landing page
-
https://doi.org/10.32920/ryerson.14655450.v1Publisher landing page
- PDF URL
-
https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdfDirect OA link when available
- Concepts
-
Computer science, Scale (ratio), Information retrieval, Data science, Social network (sociolinguistics), Recommender system, World Wide Web, Social media, Data mining, Geography, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3186937652 |
|---|---|
| doi | https://doi.org/10.32920/ryerson.14655450.v1 |
| ids.doi | https://doi.org/10.32920/ryerson.14655450.v1 |
| ids.mag | 3186937652 |
| ids.openalex | https://openalex.org/W3186937652 |
| fwci | 0.0 |
| type | preprint |
| title | Content Recommendation on Small Scale Sparse Social Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6950057744979858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6329563856124878 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C23123220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5443860292434692 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[2].display_name | Information retrieval |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5380216836929321 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C4727928 |
| concepts[4].level | 3 |
| concepts[4].score | 0.501068115234375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17164759 |
| concepts[4].display_name | Social network (sociolinguistics) |
| concepts[5].id | https://openalex.org/C557471498 |
| concepts[5].level | 2 |
| concepts[5].score | 0.497283011674881 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[5].display_name | Recommender system |
| concepts[6].id | https://openalex.org/C136764020 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4242689609527588 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[6].display_name | World Wide Web |
| concepts[7].id | https://openalex.org/C518677369 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3814582824707031 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[7].display_name | Social media |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34032779932022095 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08198481798171997 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6950057744979858 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.6329563856124878 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/information-retrieval |
| keywords[2].score | 0.5443860292434692 |
| keywords[2].display_name | Information retrieval |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.5380216836929321 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/social-network |
| keywords[4].score | 0.501068115234375 |
| keywords[4].display_name | Social network (sociolinguistics) |
| keywords[5].id | https://openalex.org/keywords/recommender-system |
| keywords[5].score | 0.497283011674881 |
| keywords[5].display_name | Recommender system |
| keywords[6].id | https://openalex.org/keywords/world-wide-web |
| keywords[6].score | 0.4242689609527588 |
| keywords[6].display_name | World Wide Web |
| keywords[7].id | https://openalex.org/keywords/social-media |
| keywords[7].score | 0.3814582824707031 |
| keywords[7].display_name | Social media |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.34032779932022095 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.08198481798171997 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | doi:10.32920/ryerson.14655450.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32920/ryerson.14655450.v1 |
| locations[1].id | pmh:oai:figshare.com:article/14655450 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074004189 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9562-9922 |
| authorships[0].author.display_name | Bilal Khan |
| authorships[0].countries | CA, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I530967 |
| authorships[0].affiliations[0].raw_affiliation_string | Ryerson University |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I143685665 |
| authorships[0].affiliations[1].raw_affiliation_string | Master of Applied Science Electrical and Computer Engineering |
| authorships[0].affiliations[2].raw_affiliation_string | Electrical and Computer Engineering Toronto, Ontario, Canada, 2019 |
| authorships[0].affiliations[3].raw_affiliation_string | Agency Network. |
| authorships[0].institutions[0].id | https://openalex.org/I530967 |
| authorships[0].institutions[0].ror | https://ror.org/05g13zd79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I530967 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Toronto Metropolitan University |
| authorships[0].institutions[1].id | https://openalex.org/I143685665 |
| authorships[0].institutions[1].ror | https://ror.org/04fn4g645 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I143685665 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Master's College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bilal Khan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Agency Network., Electrical and Computer Engineering Toronto, Ontario, Canada, 2019, Master of Applied Science Electrical and Computer Engineering, Ryerson University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Content Recommendation on Small Scale Sparse Social Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4390273403, https://openalex.org/W4386781444, https://openalex.org/W3092950680, https://openalex.org/W4246980185, https://openalex.org/W2150182025, https://openalex.org/W3197542405, https://openalex.org/W2418190244, https://openalex.org/W2120116197, https://openalex.org/W159653547 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.32920/ryerson.14655450.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32920/ryerson.14655450.v1 |
| primary_location.id | doi:10.32920/ryerson.14655450.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://rshare.library.torontomu.ca/articles/thesis/Content_Recommendation_on_Small_Scale_Sparse_Social_Network/14655450/1/files/28137276.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32920/ryerson.14655450.v1 |
| publication_date | 2021-05-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2441269247, https://openalex.org/W2159426623, https://openalex.org/W1530276735, https://openalex.org/W295894637, https://openalex.org/W2557303503, https://openalex.org/W2113802117, https://openalex.org/W2570642178, https://openalex.org/W4294629820, https://openalex.org/W1614298861, https://openalex.org/W2145360759, https://openalex.org/W1540636360, https://openalex.org/W2912545998, https://openalex.org/W2101409192, https://openalex.org/W2055278701, https://openalex.org/W2889611811, https://openalex.org/W2805918584, https://openalex.org/W4246413330, https://openalex.org/W4239465080, https://openalex.org/W2238216200, https://openalex.org/W2799303744, https://openalex.org/W2121710227, https://openalex.org/W2108630796, https://openalex.org/W2084439920, https://openalex.org/W1603378382, https://openalex.org/W4300601563, https://openalex.org/W2188558041, https://openalex.org/W2159094788, https://openalex.org/W4394127431, https://openalex.org/W1523590985, https://openalex.org/W2016614869, https://openalex.org/W2321975078, https://openalex.org/W2117667023, https://openalex.org/W1552339598, https://openalex.org/W1996869586, https://openalex.org/W2131744502, https://openalex.org/W100415715, https://openalex.org/W2155648952, https://openalex.org/W2054141820, https://openalex.org/W2510839455, https://openalex.org/W2293286118, https://openalex.org/W2000881526, https://openalex.org/W2113858518, https://openalex.org/W1974641193, https://openalex.org/W1660390307, https://openalex.org/W2399167294, https://openalex.org/W2559286704, https://openalex.org/W1984949216, https://openalex.org/W218348339, https://openalex.org/W2120131867, https://openalex.org/W2061212083, https://openalex.org/W2929484697, https://openalex.org/W2091903656, https://openalex.org/W2164385956, https://openalex.org/W2952706885, https://openalex.org/W1880262756, https://openalex.org/W2284209553, https://openalex.org/W1971040550, https://openalex.org/W1518260748, https://openalex.org/W1486317198, https://openalex.org/W2135790056, https://openalex.org/W1669437150, https://openalex.org/W1961147827, https://openalex.org/W2042281163, https://openalex.org/W2806440576, https://openalex.org/W1574447377, https://openalex.org/W3123679541, https://openalex.org/W2104862701, https://openalex.org/W1996174542, https://openalex.org/W1678889691, https://openalex.org/W2120379285, https://openalex.org/W2324238275, https://openalex.org/W2535471157, https://openalex.org/W2963514026, https://openalex.org/W1980672078, https://openalex.org/W69783631, https://openalex.org/W2336953982, https://openalex.org/W2116374398, https://openalex.org/W2963450965 |
| referenced_works_count | 78 |
| abstract_inverted_index.a | 47, 51, 86, 89, 106, 113 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.We | 76, 93 |
| abstract_inverted_index.an | 39 |
| abstract_inverted_index.as | 23, 25, 115 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 10, 60 |
| abstract_inverted_index.is | 59 |
| abstract_inverted_index.of | 13, 21, 29, 56, 63 |
| abstract_inverted_index.on | 38, 73, 111 |
| abstract_inverted_index.or | 120 |
| abstract_inverted_index.so | 37 |
| abstract_inverted_index.to | 117 |
| abstract_inverted_index.we | 45 |
| abstract_inverted_index.all | 33 |
| abstract_inverted_index.and | 18, 70, 99 |
| abstract_inverted_index.for | 85, 109 |
| abstract_inverted_index.how | 101 |
| abstract_inverted_index.the | 11, 19, 26, 54, 57, 61 |
| abstract_inverted_index.yet | 35 |
| abstract_inverted_index.both | 9, 67 |
| abstract_inverted_index.form | 62 |
| abstract_inverted_index.from | 6, 49 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.left | 72 |
| abstract_inverted_index.more | 36, 121 |
| abstract_inverted_index.show | 100 |
| abstract_inverted_index.size | 12 |
| abstract_inverted_index.such | 50, 112 |
| abstract_inverted_index.text | 14 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.user | 64 |
| abstract_inverted_index.well | 24 |
| abstract_inverted_index.what | 79 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.work | 44 |
| abstract_inverted_index.Small | 0 |
| abstract_inverted_index.based | 103 |
| abstract_inverted_index.means | 108 |
| abstract_inverted_index.other | 118 |
| abstract_inverted_index.scale | 1 |
| abstract_inverted_index.text; | 66 |
| abstract_inverted_index.those | 74 |
| abstract_inverted_index.users | 17 |
| abstract_inverted_index.where | 53 |
| abstract_inverted_index.would | 81 |
| abstract_inverted_index.nature | 28 |
| abstract_inverted_index.number | 20 |
| abstract_inverted_index.posted | 15, 68 |
| abstract_inverted_index.posts, | 22 |
| abstract_inverted_index.posts. | 75 |
| abstract_inverted_index.social | 2 |
| abstract_inverted_index.suffer | 5 |
| abstract_inverted_index.viable | 107 |
| abstract_inverted_index.affects | 32 |
| abstract_inverted_index.content | 69 |
| abstract_inverted_index.dataset | 48 |
| abstract_inverted_index.examine | 46 |
| abstract_inverted_index.inquire | 77 |
| abstract_inverted_index.leading | 95 |
| abstract_inverted_index.network | 3 |
| abstract_inverted_index.present | 82, 105 |
| abstract_inverted_index.similar | 90 |
| abstract_inverted_index.textual | 96 |
| abstract_inverted_index.activity | 58 |
| abstract_inverted_index.advanced | 122 |
| abstract_inverted_index.analysis | 97 |
| abstract_inverted_index.comments | 71 |
| abstract_inverted_index.compared | 116 |
| abstract_inverted_index.dataset. | 92 |
| abstract_inverted_index.emerging | 40 |
| abstract_inverted_index.evaluate | 94 |
| abstract_inverted_index.kurtosis | 30 |
| abstract_inverted_index.majority | 55 |
| abstract_inverted_index.platform | 87, 114 |
| abstract_inverted_index.simpler, | 119 |
| abstract_inverted_index.specific | 27 |
| abstract_inverted_index.suitable | 83 |
| abstract_inverted_index.generated | 65 |
| abstract_inverted_index.increased | 7 |
| abstract_inverted_index.platform, | 52 |
| abstract_inverted_index.platform. | 41 |
| abstract_inverted_index.platforms | 4 |
| abstract_inverted_index.sparsity, | 8 |
| abstract_inverted_index.platforms, | 34 |
| abstract_inverted_index.techniques | 80, 98, 104 |
| abstract_inverted_index.techniques. | 123 |
| abstract_inverted_index.topic-model | 102 |
| abstract_inverted_index.characteristic | 91 |
| abstract_inverted_index.recommendation | 110 |
| abstract_inverted_index.recommendations | 84 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5074004189 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I143685665, https://openalex.org/I530967 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.15014508 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |