Context-Adaptive Color Optimization for Web Accessibility: Balancing Perceptual Fidelity and Functional Requirements Article Swipe
We extend our OKLCH-based accessibility optimization with context-adaptive constraint strategies that achieve near-universal success rates across diverse use cases. Our original strict algorithm reached 66-77% success by prioritizing minimal perceptual change ($ΔE \leq 5.0$), optimizing for enterprise contexts where brand fidelity is paramount. However, this one-size-fits-all approach fails to serve the broader ecosystem of web developers who need accessible solutions even when strict perceptual constraints cannot be satisfied. We introduce recursive optimization (Mode~1) that compounds small adjustments across iterations, achieving 93.68% success on all color pairs and 100% success on reasonable pairs (contrast ratio $ρ> 2.0$), representing a +27.23 percentage point improvement. A relaxed fallback mode (Mode~2) handles pathological edge cases, reaching 98.73% overall success. Evaluation on 10,000 realistic web color pairs demonstrates that context-aware constraint relaxation, combined with absolute hue preservation, enables practical accessibility compliance while maintaining brand color identity. The median perceptual change remains zero across all modes (most pairs already comply), while the 90th percentile reaches $ΔE_{2000} = 15.55$ in Mode~1 -- perceptually acceptable when hue invariance preserves the essential character of the original color. The approach is deployed in CM-Colors v0.5.0 (800+ monthly downloads), providing developers with explicit control over the accessibility-fidelity trade-off appropriate to their context.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2512.07623
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111352546
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111352546Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.07623Digital Object Identifier
- Title
-
Context-Adaptive Color Optimization for Web Accessibility: Balancing Perceptual Fidelity and Functional RequirementsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
R, Lalitha AList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2512.07623Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2512.07623Direct OA link when available
- Concepts
-
Computer science, Fidelity, Perception, Hue, Constraint (computer-aided design), Artificial intelligence, Point (geometry), Mode (computer interface), Optimization problem, Control (management), Human–computer interaction, Mathematical optimization, High fidelity, Variation (astronomy), Computer vision, Machine learning, Line (geometry), Constraint satisfaction problem, Representation (politics), Web applicationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111352546 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.07623 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.07623 |
| ids.openalex | https://openalex.org/W7111352546 |
| fwci | |
| type | preprint |
| title | Context-Adaptive Color Optimization for Web Accessibility: Balancing Perceptual Fidelity and Functional Requirements |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6292533874511719 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776459999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6036052703857422 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[1].display_name | Fidelity |
| concepts[2].id | https://openalex.org/C26760741 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5598811507225037 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[2].display_name | Perception |
| concepts[3].id | https://openalex.org/C126537357 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5318185091018677 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q372948 |
| concepts[3].display_name | Hue |
| concepts[4].id | https://openalex.org/C2776036281 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5058377385139465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[4].display_name | Constraint (computer-aided design) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44283756613731384 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C28719098 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44056499004364014 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[6].display_name | Point (geometry) |
| concepts[7].id | https://openalex.org/C48677424 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4071747660636902 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6888088 |
| concepts[7].display_name | Mode (computer interface) |
| concepts[8].id | https://openalex.org/C137836250 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39268893003463745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[8].display_name | Optimization problem |
| concepts[9].id | https://openalex.org/C2775924081 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3523528277873993 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[9].display_name | Control (management) |
| concepts[10].id | https://openalex.org/C107457646 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3377559781074524 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[10].display_name | Human–computer interaction |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32290366291999817 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C113364801 |
| concepts[12].level | 2 |
| concepts[12].score | 0.32146817445755005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[12].display_name | High fidelity |
| concepts[13].id | https://openalex.org/C2778334786 |
| concepts[13].level | 2 |
| concepts[13].score | 0.30609840154647827 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1586270 |
| concepts[13].display_name | Variation (astronomy) |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3041656017303467 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2985837161540985 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C198352243 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2982628345489502 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[16].display_name | Line (geometry) |
| concepts[17].id | https://openalex.org/C199622910 |
| concepts[17].level | 3 |
| concepts[17].score | 0.27954450249671936 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1128326 |
| concepts[17].display_name | Constraint satisfaction problem |
| concepts[18].id | https://openalex.org/C2776359362 |
| concepts[18].level | 3 |
| concepts[18].score | 0.26951879262924194 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[18].display_name | Representation (politics) |
| concepts[19].id | https://openalex.org/C118643609 |
| concepts[19].level | 2 |
| concepts[19].score | 0.25792360305786133 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189210 |
| concepts[19].display_name | Web application |
| keywords[0].id | https://openalex.org/keywords/fidelity |
| keywords[0].score | 0.6036052703857422 |
| keywords[0].display_name | Fidelity |
| keywords[1].id | https://openalex.org/keywords/perception |
| keywords[1].score | 0.5598811507225037 |
| keywords[1].display_name | Perception |
| keywords[2].id | https://openalex.org/keywords/hue |
| keywords[2].score | 0.5318185091018677 |
| keywords[2].display_name | Hue |
| keywords[3].id | https://openalex.org/keywords/constraint |
| keywords[3].score | 0.5058377385139465 |
| keywords[3].display_name | Constraint (computer-aided design) |
| keywords[4].id | https://openalex.org/keywords/point |
| keywords[4].score | 0.44056499004364014 |
| keywords[4].display_name | Point (geometry) |
| keywords[5].id | https://openalex.org/keywords/mode |
| keywords[5].score | 0.4071747660636902 |
| keywords[5].display_name | Mode (computer interface) |
| keywords[6].id | https://openalex.org/keywords/optimization-problem |
| keywords[6].score | 0.39268893003463745 |
| keywords[6].display_name | Optimization problem |
| language | |
| locations[0].id | doi:10.48550/arxiv.2512.07623 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2512.07623 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | R, Lalitha A |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | R, Lalitha A |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2512.07623 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Context-Adaptive Color Optimization for Web Accessibility: Balancing Perceptual Fidelity and Functional Requirements |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2512.07623 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07623 |
| primary_location.id | doi:10.48550/arxiv.2512.07623 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07623 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 160 |
| abstract_inverted_index.A | 102 |
| abstract_inverted_index.a | 97 |
| abstract_inverted_index.-- | 164 |
| abstract_inverted_index.We | 0, 68 |
| abstract_inverted_index.be | 66 |
| abstract_inverted_index.by | 26 |
| abstract_inverted_index.in | 162, 182 |
| abstract_inverted_index.is | 41, 180 |
| abstract_inverted_index.of | 53, 174 |
| abstract_inverted_index.on | 82, 89, 116 |
| abstract_inverted_index.to | 48, 198 |
| abstract_inverted_index.Our | 19 |
| abstract_inverted_index.The | 141, 178 |
| abstract_inverted_index.all | 83, 148 |
| abstract_inverted_index.and | 86 |
| abstract_inverted_index.for | 35 |
| abstract_inverted_index.hue | 130, 168 |
| abstract_inverted_index.our | 2 |
| abstract_inverted_index.the | 50, 155, 171, 175, 194 |
| abstract_inverted_index.use | 17 |
| abstract_inverted_index.web | 54, 119 |
| abstract_inverted_index.who | 56 |
| abstract_inverted_index.100% | 87 |
| abstract_inverted_index.90th | 156 |
| abstract_inverted_index.\leq | 32 |
| abstract_inverted_index.edge | 109 |
| abstract_inverted_index.even | 60 |
| abstract_inverted_index.mode | 105 |
| abstract_inverted_index.need | 57 |
| abstract_inverted_index.over | 193 |
| abstract_inverted_index.that | 10, 73, 123 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.when | 61, 167 |
| abstract_inverted_index.with | 6, 128, 190 |
| abstract_inverted_index.zero | 146 |
| abstract_inverted_index.($ΔE | 31 |
| abstract_inverted_index.(800+ | 185 |
| abstract_inverted_index.(most | 150 |
| abstract_inverted_index.brand | 39, 138 |
| abstract_inverted_index.color | 84, 120, 139 |
| abstract_inverted_index.fails | 47 |
| abstract_inverted_index.modes | 149 |
| abstract_inverted_index.pairs | 85, 91, 121, 151 |
| abstract_inverted_index.point | 100 |
| abstract_inverted_index.rates | 14 |
| abstract_inverted_index.ratio | 93 |
| abstract_inverted_index.serve | 49 |
| abstract_inverted_index.small | 75 |
| abstract_inverted_index.their | 199 |
| abstract_inverted_index.where | 38 |
| abstract_inverted_index.while | 136, 154 |
| abstract_inverted_index.+27.23 | 98 |
| abstract_inverted_index.10,000 | 117 |
| abstract_inverted_index.15.55$ | 161 |
| abstract_inverted_index.2.0$), | 95 |
| abstract_inverted_index.5.0$), | 33 |
| abstract_inverted_index.66-77% | 24 |
| abstract_inverted_index.93.68% | 80 |
| abstract_inverted_index.98.73% | 112 |
| abstract_inverted_index.Mode~1 | 163 |
| abstract_inverted_index.across | 15, 77, 147 |
| abstract_inverted_index.cannot | 65 |
| abstract_inverted_index.cases, | 110 |
| abstract_inverted_index.cases. | 18 |
| abstract_inverted_index.change | 30, 144 |
| abstract_inverted_index.color. | 177 |
| abstract_inverted_index.extend | 1 |
| abstract_inverted_index.median | 142 |
| abstract_inverted_index.strict | 21, 62 |
| abstract_inverted_index.v0.5.0 | 184 |
| abstract_inverted_index.$ρ> | 94 |
| abstract_inverted_index.achieve | 11 |
| abstract_inverted_index.already | 152 |
| abstract_inverted_index.broader | 51 |
| abstract_inverted_index.control | 192 |
| abstract_inverted_index.diverse | 16 |
| abstract_inverted_index.enables | 132 |
| abstract_inverted_index.handles | 107 |
| abstract_inverted_index.minimal | 28 |
| abstract_inverted_index.monthly | 186 |
| abstract_inverted_index.overall | 113 |
| abstract_inverted_index.reached | 23 |
| abstract_inverted_index.reaches | 158 |
| abstract_inverted_index.relaxed | 103 |
| abstract_inverted_index.remains | 145 |
| abstract_inverted_index.success | 13, 25, 81, 88 |
| abstract_inverted_index.(Mode~1) | 72 |
| abstract_inverted_index.(Mode~2) | 106 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.absolute | 129 |
| abstract_inverted_index.approach | 46, 179 |
| abstract_inverted_index.combined | 127 |
| abstract_inverted_index.comply), | 153 |
| abstract_inverted_index.context. | 200 |
| abstract_inverted_index.contexts | 37 |
| abstract_inverted_index.deployed | 181 |
| abstract_inverted_index.explicit | 191 |
| abstract_inverted_index.fallback | 104 |
| abstract_inverted_index.fidelity | 40 |
| abstract_inverted_index.original | 20, 176 |
| abstract_inverted_index.reaching | 111 |
| abstract_inverted_index.success. | 114 |
| abstract_inverted_index.(contrast | 92 |
| abstract_inverted_index.CM-Colors | 183 |
| abstract_inverted_index.achieving | 79 |
| abstract_inverted_index.algorithm | 22 |
| abstract_inverted_index.character | 173 |
| abstract_inverted_index.compounds | 74 |
| abstract_inverted_index.ecosystem | 52 |
| abstract_inverted_index.essential | 172 |
| abstract_inverted_index.identity. | 140 |
| abstract_inverted_index.introduce | 69 |
| abstract_inverted_index.practical | 133 |
| abstract_inverted_index.preserves | 170 |
| abstract_inverted_index.providing | 188 |
| abstract_inverted_index.realistic | 118 |
| abstract_inverted_index.recursive | 70 |
| abstract_inverted_index.solutions | 59 |
| abstract_inverted_index.trade-off | 196 |
| abstract_inverted_index.Evaluation | 115 |
| abstract_inverted_index.acceptable | 166 |
| abstract_inverted_index.accessible | 58 |
| abstract_inverted_index.compliance | 135 |
| abstract_inverted_index.constraint | 8, 125 |
| abstract_inverted_index.developers | 55, 189 |
| abstract_inverted_index.enterprise | 36 |
| abstract_inverted_index.invariance | 169 |
| abstract_inverted_index.optimizing | 34 |
| abstract_inverted_index.paramount. | 42 |
| abstract_inverted_index.percentage | 99 |
| abstract_inverted_index.percentile | 157 |
| abstract_inverted_index.perceptual | 29, 63, 143 |
| abstract_inverted_index.reasonable | 90 |
| abstract_inverted_index.satisfied. | 67 |
| abstract_inverted_index.strategies | 9 |
| abstract_inverted_index.$ΔE_{2000} | 159 |
| abstract_inverted_index.OKLCH-based | 3 |
| abstract_inverted_index.adjustments | 76 |
| abstract_inverted_index.appropriate | 197 |
| abstract_inverted_index.constraints | 64 |
| abstract_inverted_index.downloads), | 187 |
| abstract_inverted_index.iterations, | 78 |
| abstract_inverted_index.maintaining | 137 |
| abstract_inverted_index.relaxation, | 126 |
| abstract_inverted_index.demonstrates | 122 |
| abstract_inverted_index.improvement. | 101 |
| abstract_inverted_index.optimization | 5, 71 |
| abstract_inverted_index.pathological | 108 |
| abstract_inverted_index.perceptually | 165 |
| abstract_inverted_index.prioritizing | 27 |
| abstract_inverted_index.representing | 96 |
| abstract_inverted_index.accessibility | 4, 134 |
| abstract_inverted_index.context-aware | 124 |
| abstract_inverted_index.preservation, | 131 |
| abstract_inverted_index.near-universal | 12 |
| abstract_inverted_index.context-adaptive | 7 |
| abstract_inverted_index.one-size-fits-all | 45 |
| abstract_inverted_index.accessibility-fidelity | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |