Context Attribution with Multi-Armed Bandit Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.19977
Understanding which parts of the retrieved context contribute to a large language model's generated answer is essential for building interpretable and trustworthy generative QA systems. We propose a novel framework that formulates context attribution as a combinatorial multi-armed bandit (CMAB) problem. Each context segment is treated as a bandit arm, and we employ Combinatorial Thompson Sampling (CTS) to efficiently explore the exponentially large space of context subsets under a limited query budget. Our method defines a reward function based on normalized token likelihoods, capturing how well a subset of segments supports the original model response. Unlike traditional perturbation-based attribution methods such as SHAP, which sample subsets uniformly and incur high computational costs, our approach adaptively balances exploration and exploitation by leveraging posterior estimates of segment relevance. This leads to substantially improved query efficiency while maintaining high attribution fidelity. Extensive experiments on diverse datasets and LLMs demonstrate that our method achieves competitive attribution quality with fewer model queries.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.19977
- https://arxiv.org/pdf/2506.19977
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414988062
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414988062Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.19977Digital Object Identifier
- Title
-
Context Attribution with Multi-Armed Bandit OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-24Full publication date if available
- Authors
-
Deng Pan, Keerthiram Murugesan, Nuno Moniz, Nitesh V. ChawlaList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.19977Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.19977Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.19977Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414988062 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.19977 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.19977 |
| ids.openalex | https://openalex.org/W4414988062 |
| fwci | |
| type | preprint |
| title | Context Attribution with Multi-Armed Bandit Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9598000049591064 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9484000205993652 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.19977 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.19977 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.19977 |
| locations[1].id | doi:10.48550/arxiv.2506.19977 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.19977 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103197872 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1302-9182 |
| authorships[0].author.display_name | Deng Pan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pan, Deng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104188415 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Keerthiram Murugesan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Murugesan, Keerthiram |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047689411 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4322-1076 |
| authorships[2].author.display_name | Nuno Moniz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Moniz, Nuno |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068157871 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3932-5956 |
| authorships[3].author.display_name | Nitesh V. Chawla |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chawla, Nitesh |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.19977 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | Context Attribution with Multi-Armed Bandit Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.19977 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.19977 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.19977 |
| primary_location.id | pmh:oai:arXiv.org:2506.19977 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.19977 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.19977 |
| publication_date | 2025-06-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 27, 35, 47, 68, 75, 86 |
| abstract_inverted_index.QA | 23 |
| abstract_inverted_index.We | 25 |
| abstract_inverted_index.as | 34, 46, 101 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.is | 15, 44 |
| abstract_inverted_index.of | 3, 64, 88, 123 |
| abstract_inverted_index.on | 79, 140 |
| abstract_inverted_index.to | 8, 57, 128 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.and | 20, 50, 107, 117, 143 |
| abstract_inverted_index.for | 17 |
| abstract_inverted_index.how | 84 |
| abstract_inverted_index.our | 112, 147 |
| abstract_inverted_index.the | 4, 60, 91 |
| abstract_inverted_index.Each | 41 |
| abstract_inverted_index.LLMs | 144 |
| abstract_inverted_index.This | 126 |
| abstract_inverted_index.arm, | 49 |
| abstract_inverted_index.high | 109, 135 |
| abstract_inverted_index.such | 100 |
| abstract_inverted_index.that | 30, 146 |
| abstract_inverted_index.well | 85 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.(CTS) | 56 |
| abstract_inverted_index.SHAP, | 102 |
| abstract_inverted_index.based | 78 |
| abstract_inverted_index.fewer | 154 |
| abstract_inverted_index.incur | 108 |
| abstract_inverted_index.large | 10, 62 |
| abstract_inverted_index.leads | 127 |
| abstract_inverted_index.model | 93, 155 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.parts | 2 |
| abstract_inverted_index.query | 70, 131 |
| abstract_inverted_index.space | 63 |
| abstract_inverted_index.token | 81 |
| abstract_inverted_index.under | 67 |
| abstract_inverted_index.which | 1, 103 |
| abstract_inverted_index.while | 133 |
| abstract_inverted_index.(CMAB) | 39 |
| abstract_inverted_index.Unlike | 95 |
| abstract_inverted_index.answer | 14 |
| abstract_inverted_index.bandit | 38, 48 |
| abstract_inverted_index.costs, | 111 |
| abstract_inverted_index.employ | 52 |
| abstract_inverted_index.method | 73, 148 |
| abstract_inverted_index.reward | 76 |
| abstract_inverted_index.sample | 104 |
| abstract_inverted_index.subset | 87 |
| abstract_inverted_index.budget. | 71 |
| abstract_inverted_index.context | 6, 32, 42, 65 |
| abstract_inverted_index.defines | 74 |
| abstract_inverted_index.diverse | 141 |
| abstract_inverted_index.explore | 59 |
| abstract_inverted_index.limited | 69 |
| abstract_inverted_index.methods | 99 |
| abstract_inverted_index.model's | 12 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.quality | 152 |
| abstract_inverted_index.segment | 43, 124 |
| abstract_inverted_index.subsets | 66, 105 |
| abstract_inverted_index.treated | 45 |
| abstract_inverted_index.Sampling | 55 |
| abstract_inverted_index.Thompson | 54 |
| abstract_inverted_index.achieves | 149 |
| abstract_inverted_index.approach | 113 |
| abstract_inverted_index.balances | 115 |
| abstract_inverted_index.building | 18 |
| abstract_inverted_index.datasets | 142 |
| abstract_inverted_index.function | 77 |
| abstract_inverted_index.improved | 130 |
| abstract_inverted_index.language | 11 |
| abstract_inverted_index.original | 92 |
| abstract_inverted_index.problem. | 40 |
| abstract_inverted_index.queries. | 156 |
| abstract_inverted_index.segments | 89 |
| abstract_inverted_index.supports | 90 |
| abstract_inverted_index.systems. | 24 |
| abstract_inverted_index.Extensive | 138 |
| abstract_inverted_index.capturing | 83 |
| abstract_inverted_index.essential | 16 |
| abstract_inverted_index.estimates | 122 |
| abstract_inverted_index.fidelity. | 137 |
| abstract_inverted_index.framework | 29 |
| abstract_inverted_index.generated | 13 |
| abstract_inverted_index.posterior | 121 |
| abstract_inverted_index.response. | 94 |
| abstract_inverted_index.retrieved | 5 |
| abstract_inverted_index.uniformly | 106 |
| abstract_inverted_index.adaptively | 114 |
| abstract_inverted_index.contribute | 7 |
| abstract_inverted_index.efficiency | 132 |
| abstract_inverted_index.formulates | 31 |
| abstract_inverted_index.generative | 22 |
| abstract_inverted_index.leveraging | 120 |
| abstract_inverted_index.normalized | 80 |
| abstract_inverted_index.relevance. | 125 |
| abstract_inverted_index.attribution | 33, 98, 136, 151 |
| abstract_inverted_index.competitive | 150 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.efficiently | 58 |
| abstract_inverted_index.experiments | 139 |
| abstract_inverted_index.exploration | 116 |
| abstract_inverted_index.maintaining | 134 |
| abstract_inverted_index.multi-armed | 37 |
| abstract_inverted_index.traditional | 96 |
| abstract_inverted_index.trustworthy | 21 |
| abstract_inverted_index.exploitation | 118 |
| abstract_inverted_index.likelihoods, | 82 |
| abstract_inverted_index.Combinatorial | 53 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.combinatorial | 36 |
| abstract_inverted_index.computational | 110 |
| abstract_inverted_index.exponentially | 61 |
| abstract_inverted_index.interpretable | 19 |
| abstract_inverted_index.substantially | 129 |
| abstract_inverted_index.perturbation-based | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |