Context-Aware Learning for Generative Models Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/tnnls.2020.3011671
This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnnls.2020.3011671
- OA Status
- green
- Cited By
- 8
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3048633995
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3048633995Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnnls.2020.3011671Digital Object Identifier
- Title
-
Context-Aware Learning for Generative ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-10Full publication date if available
- Authors
-
Serafeim Perdikis, Robert Leeb, Ricardo Chavarriaga, José del R. MillánList of authors in order
- Landing page
-
https://doi.org/10.1109/tnnls.2020.3011671Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1507.08272Direct OA link when available
- Concepts
-
Generative grammar, Context (archaeology), Generative model, Computer science, Psychology, Artificial intelligence, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2022: 2, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3048633995 |
|---|---|
| doi | https://doi.org/10.1109/tnnls.2020.3011671 |
| ids.doi | https://doi.org/10.1109/tnnls.2020.3011671 |
| ids.mag | 3048633995 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32776882 |
| ids.openalex | https://openalex.org/W3048633995 |
| fwci | 0.59110271 |
| type | article |
| title | Context-Aware Learning for Generative Models |
| awards[0].id | https://openalex.org/G8077251225 |
| awards[0].funder_id | https://openalex.org/F4320338370 |
| awards[0].display_name | |
| awards[0].funder_award_id | FP7-224631 |
| awards[0].funder_display_name | FP7 Information and Communication Technologies |
| biblio.issue | 8 |
| biblio.volume | 32 |
| biblio.last_page | 3483 |
| biblio.first_page | 3471 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T12761 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Stream Mining Techniques |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| funders[0].id | https://openalex.org/F4320321942 |
| funders[0].ror | https://ror.org/04m3t9183 |
| funders[0].display_name | Hasler Stiftung |
| funders[1].id | https://openalex.org/F4320338370 |
| funders[1].ror | |
| funders[1].display_name | FP7 Information and Communication Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.779343843460083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6250937581062317 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C167966045 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5795672535896301 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[2].display_name | Generative model |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5027763843536377 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.37472009658813477 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3302172124385834 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.13567030429840088 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C166957645 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0456693172454834 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[7].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.779343843460083 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6250937581062317 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/generative-model |
| keywords[2].score | 0.5795672535896301 |
| keywords[2].display_name | Generative model |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5027763843536377 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.37472009658813477 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3302172124385834 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.13567030429840088 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/archaeology |
| keywords[7].score | 0.0456693172454834 |
| keywords[7].display_name | Archaeology |
| language | en |
| locations[0].id | doi:10.1109/tnnls.2020.3011671 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210175523 |
| locations[0].source.issn | 2162-237X, 2162-2388 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2162-237X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tnnls.2020.3011671 |
| locations[1].id | pmh:oai:arXiv.org:1507.08272 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1507.08272 |
| locations[1].version | publishedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1507.08272 |
| locations[2].id | pmid:32776882 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306525036 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | IEEE transactions on neural networks and learning systems |
| locations[2].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32776882 |
| locations[3].id | pmh:oai:digitalcollection.zhaw.ch:11475/20503 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401810 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Zürcher Hochschule für Angewandte Wissenschaften digital collection (Zurich University of Applied Sciences) |
| locations[3].source.host_organization | https://openalex.org/I200744771 |
| locations[3].source.host_organization_name | ZHAW Zurich University of Applied Sciences |
| locations[3].source.host_organization_lineage | https://openalex.org/I200744771 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://repository.essex.ac.uk/28199/ |
| locations[4].id | pmh:oai:infoscience.epfl.ch:288122 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400487 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Infoscience (Ecole Polytechnique Fédérale de Lausanne) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | cc-by-nc-nd |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | research article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | WoS |
| locations[4].landing_page_url | http://infoscience.epfl.ch/record/288122 |
| indexed_in | arxiv, crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5080036634 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2033-2486 |
| authorships[0].author.display_name | Serafeim Perdikis |
| authorships[0].countries | CH, GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I110002522 |
| authorships[0].affiliations[1].raw_affiliation_string | Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K. |
| authorships[0].institutions[0].id | https://openalex.org/I5124864 |
| authorships[0].institutions[0].ror | https://ror.org/02s376052 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[0].institutions[1].id | https://openalex.org/I110002522 |
| authorships[0].institutions[1].ror | https://ror.org/02nkf1q06 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I110002522 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Essex |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Serafeim Perdikis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K., Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| authorships[1].author.id | https://openalex.org/A5111994295 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Robert Leeb |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].raw_affiliation_string | Mindmaze SA, Lausanne, Switzerland |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I5124864 |
| authorships[1].affiliations[1].raw_affiliation_string | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I5124864 |
| authorships[1].institutions[0].ror | https://ror.org/02s376052 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Robert Leeb |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland, Mindmaze SA, Lausanne, Switzerland |
| authorships[2].author.id | https://openalex.org/A5057999426 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8879-2860 |
| authorships[2].author.display_name | Ricardo Chavarriaga |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I858936495 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Engineering, Institute of Applied Information Technology (InIT), Zurich University of Applied Sciences, Winterthur, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I858936495 |
| authorships[2].institutions[0].ror | https://ror.org/05pmsvm27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I858936495 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | ZHAW Zurich University of Applied Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I5124864 |
| authorships[2].institutions[1].ror | https://ror.org/02s376052 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[2].institutions[1].country_code | CH |
| authorships[2].institutions[1].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ricardo Chavarriaga |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland, School of Engineering, Institute of Applied Information Technology (InIT), Zurich University of Applied Sciences, Winterthur, Switzerland |
| authorships[3].author.id | https://openalex.org/A5050363894 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5819-1522 |
| authorships[3].author.display_name | José del R. Millán |
| authorships[3].countries | CH, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I86519309 |
| authorships[3].affiliations[0].raw_affiliation_string | The University of Texas at Austin, Austin, TX, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I5124864 |
| authorships[3].affiliations[1].raw_affiliation_string | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I5124864 |
| authorships[3].institutions[0].ror | https://ror.org/02s376052 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[3].institutions[1].id | https://openalex.org/I86519309 |
| authorships[3].institutions[1].ror | https://ror.org/00hj54h04 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I86519309 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | The University of Texas at Austin |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jose del R. Millan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland, The University of Texas at Austin, Austin, TX, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1507.08272 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Context-Aware Learning for Generative Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4395044357, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559, https://openalex.org/W4299831724 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:1507.08272 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1507.08272 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1507.08272 |
| primary_location.id | doi:10.1109/tnnls.2020.3011671 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210175523 |
| primary_location.source.issn | 2162-237X, 2162-2388 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2162-237X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tnnls.2020.3011671 |
| publication_date | 2020-08-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W6684342596, https://openalex.org/W6633115214, https://openalex.org/W6679888141, https://openalex.org/W2125327503, https://openalex.org/W2141416357, https://openalex.org/W2169336678, https://openalex.org/W2133504961, https://openalex.org/W6683408601, https://openalex.org/W2250981850, https://openalex.org/W6681200271, https://openalex.org/W6682003322, https://openalex.org/W6675528751, https://openalex.org/W6677498827, https://openalex.org/W4214717370, https://openalex.org/W1479807131, https://openalex.org/W2113023411, https://openalex.org/W2094971407, https://openalex.org/W1973598714, https://openalex.org/W6686134021, https://openalex.org/W2151657146, https://openalex.org/W2037603696, https://openalex.org/W2048679005, https://openalex.org/W2986063762, https://openalex.org/W3009854800, https://openalex.org/W2346898728, https://openalex.org/W1989664338, https://openalex.org/W6675944832, https://openalex.org/W6681153989, https://openalex.org/W154869794, https://openalex.org/W2128314196, https://openalex.org/W2129479650, https://openalex.org/W6679767772, https://openalex.org/W6633968015, https://openalex.org/W1819547138, https://openalex.org/W2503956817, https://openalex.org/W6676643997, https://openalex.org/W6684914652, https://openalex.org/W6640963894, https://openalex.org/W6682991711, https://openalex.org/W6677993624, https://openalex.org/W6683235360, https://openalex.org/W6630272163, https://openalex.org/W6752249392, https://openalex.org/W2096072446, https://openalex.org/W2049633694, https://openalex.org/W2042216486, https://openalex.org/W2005696528, https://openalex.org/W2963687836, https://openalex.org/W4300668030, https://openalex.org/W6808810039, https://openalex.org/W6692621330, https://openalex.org/W2102524069, https://openalex.org/W2132655161, https://openalex.org/W2108501770, https://openalex.org/W2122052811, https://openalex.org/W2803536330, https://openalex.org/W2261396597, https://openalex.org/W2145673887, https://openalex.org/W2963007778, https://openalex.org/W2963641944, https://openalex.org/W4245973528, https://openalex.org/W2963812505, https://openalex.org/W2168912077, https://openalex.org/W2148687775, https://openalex.org/W1663973292, https://openalex.org/W2997519153, https://openalex.org/W3010865323, https://openalex.org/W1959608418, https://openalex.org/W2163115612, https://openalex.org/W2394745646, https://openalex.org/W42242728, https://openalex.org/W2135484641, https://openalex.org/W2131864341, https://openalex.org/W1545139845, https://openalex.org/W2140335411, https://openalex.org/W2143513973, https://openalex.org/W1566499617, https://openalex.org/W2117729721, https://openalex.org/W2122759946, https://openalex.org/W1506602547, https://openalex.org/W2949416428, https://openalex.org/W2494032084, https://openalex.org/W2121863487, https://openalex.org/W2183286887, https://openalex.org/W2046709760, https://openalex.org/W2009086942, https://openalex.org/W2111478152, https://openalex.org/W2140076625, https://openalex.org/W1553187123, https://openalex.org/W2142165428, https://openalex.org/W2158681777, https://openalex.org/W2154368244 |
| referenced_works_count | 92 |
| abstract_inverted_index.a | 191 |
| abstract_inverted_index.By | 65 |
| abstract_inverted_index.an | 164 |
| abstract_inverted_index.as | 26 |
| abstract_inverted_index.by | 13, 162 |
| abstract_inverted_index.in | 120 |
| abstract_inverted_index.is | 135, 188 |
| abstract_inverted_index.of | 5, 37, 53, 59, 68, 94, 153, 159, 176 |
| abstract_inverted_index.or | 116 |
| abstract_inverted_index.to | 79, 90, 156, 178 |
| abstract_inverted_index.we | 31, 148 |
| abstract_inverted_index.MLE | 87 |
| abstract_inverted_index.The | 99, 186 |
| abstract_inverted_index.and | 48, 85, 112, 128 |
| abstract_inverted_index.any | 60, 157 |
| abstract_inverted_index.are | 77 |
| abstract_inverted_index.can | 49 |
| abstract_inverted_index.for | 7, 168 |
| abstract_inverted_index.the | 3, 27, 44, 51, 57, 69, 74, 82, 91, 95, 131, 150, 174 |
| abstract_inverted_index.(EM) | 41 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.case | 47 |
| abstract_inverted_index.data | 63 |
| abstract_inverted_index.deep | 180 |
| abstract_inverted_index.over | 43 |
| abstract_inverted_index.show | 32 |
| abstract_inverted_index.side | 195 |
| abstract_inverted_index.that | 11, 33 |
| abstract_inverted_index.this | 154 |
| abstract_inverted_index.thus | 172 |
| abstract_inverted_index.type | 158 |
| abstract_inverted_index.with | 9, 17, 137, 182, 190 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.(MLE) | 36 |
| abstract_inverted_index.Using | 21 |
| abstract_inverted_index.among | 130 |
| abstract_inverted_index.class | 4 |
| abstract_inverted_index.model | 161 |
| abstract_inverted_index.range | 80 |
| abstract_inverted_index.shown | 119 |
| abstract_inverted_index.three | 138 |
| abstract_inverted_index.while | 123 |
| abstract_inverted_index.(FMMs) | 25 |
| abstract_inverted_index.(MIP), | 73 |
| abstract_inverted_index.(VAs), | 171 |
| abstract_inverted_index.direct | 66 |
| abstract_inverted_index.faster | 109 |
| abstract_inverted_index.finite | 22 |
| abstract_inverted_index.higher | 103 |
| abstract_inverted_index.latter | 187 |
| abstract_inverted_index.models | 16, 24 |
| abstract_inverted_index.neural | 184 |
| abstract_inverted_index.proven | 78 |
| abstract_inverted_index.rates, | 111 |
| abstract_inverted_index.regard | 102 |
| abstract_inverted_index.absence | 58 |
| abstract_inverted_index.between | 81 |
| abstract_inverted_index.content | 93 |
| abstract_inverted_index.despite | 56 |
| abstract_inverted_index.emerges | 12 |
| abstract_inverted_index.errors, | 108 |
| abstract_inverted_index.fitness | 118 |
| abstract_inverted_index.missing | 70 |
| abstract_inverted_index.mixture | 23, 145 |
| abstract_inverted_index.models. | 146 |
| abstract_inverted_index.natural | 151 |
| abstract_inverted_index.regular | 45 |
| abstract_inverted_index.smaller | 106 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.through | 39 |
| abstract_inverted_index.various | 121 |
| abstract_inverted_index.Bayesian | 29 |
| abstract_inverted_index.Gaussian | 144 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.acquired | 100 |
| abstract_inverted_index.approach | 50 |
| abstract_inverted_index.benefits | 101 |
| abstract_inverted_index.deriving | 163 |
| abstract_inverted_index.embedded | 18 |
| abstract_inverted_index.explicit | 61 |
| abstract_inverted_index.improved | 113 |
| abstract_inverted_index.improves | 42 |
| abstract_inverted_index.learning | 8, 181 |
| abstract_inverted_index.network, | 30 |
| abstract_inverted_index.outlined | 132 |
| abstract_inverted_index.spectrum | 175 |
| abstract_inverted_index.standard | 107 |
| abstract_inverted_index.algorithm | 167, 193 |
| abstract_inverted_index.employing | 143 |
| abstract_inverted_index.exemplify | 149 |
| abstract_inverted_index.extending | 14 |
| abstract_inverted_index.extension | 152 |
| abstract_inverted_index.important | 126 |
| abstract_inverted_index.labeling. | 64 |
| abstract_inverted_index.learning, | 55 |
| abstract_inverted_index.networks. | 185 |
| abstract_inverted_index.principle | 72 |
| abstract_inverted_index.provided. | 98 |
| abstract_inverted_index.scenarios | 122, 142 |
| abstract_inverted_index.showcased | 136 |
| abstract_inverted_index.algorithms | 6 |
| abstract_inverted_index.artificial | 183 |
| abstract_inverted_index.assistance | 97 |
| abstract_inverted_index.broadening | 173 |
| abstract_inverted_index.contextual | 96 |
| abstract_inverted_index.contrasted | 189 |
| abstract_inverted_index.equivalent | 165 |
| abstract_inverted_index.estimation | 35, 104 |
| abstract_inverted_index.exploiting | 194 |
| abstract_inverted_index.generative | 15, 160 |
| abstract_inverted_index.parameters | 38 |
| abstract_inverted_index.precision, | 105 |
| abstract_inverted_index.properties | 127 |
| abstract_inverted_index.real-world | 139 |
| abstract_inverted_index.regression | 117 |
| abstract_inverted_index.supervised | 54, 84 |
| abstract_inverted_index.variables. | 20 |
| abstract_inverted_index.algorithms' | 75 |
| abstract_inverted_index.application | 67 |
| abstract_inverted_index.convergence | 110 |
| abstract_inverted_index.differences | 129 |
| abstract_inverted_index.extremities | 88 |
| abstract_inverted_index.information | 71, 92 |
| abstract_inverted_index.methodology | 155 |
| abstract_inverted_index.situations. | 133 |
| abstract_inverted_index.variational | 169 |
| abstract_inverted_index.Importantly, | 147 |
| abstract_inverted_index.autoencoders | 170 |
| abstract_inverted_index.conventional | 83 |
| abstract_inverted_index.ground-truth | 62 |
| abstract_inverted_index.highlighting | 125 |
| abstract_inverted_index.information. | 196 |
| abstract_inverted_index.performances | 52, 76 |
| abstract_inverted_index.prototypical | 28 |
| abstract_inverted_index.unsupervised | 46, 86, 140, 179 |
| abstract_inverted_index.Applicability | 134 |
| abstract_inverted_index.applicability | 177 |
| abstract_inverted_index.context-aware | 166 |
| abstract_inverted_index.classification | 114, 141 |
| abstract_inverted_index.proportionally | 89 |
| abstract_inverted_index.context-related | 19 |
| abstract_inverted_index.neural-symbolic | 192 |
| abstract_inverted_index.side-information | 10 |
| abstract_inverted_index.maximum-likelihood | 34 |
| abstract_inverted_index.expectation-maximization | 40 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.6750716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |